Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Spherical designs, discrepancy and numerical integration


Authors: Peter J. Grabner and Robert F. Tichy
Journal: Math. Comp. 60 (1993), 327-336
MSC: Primary 11K45; Secondary 65C05
DOI: https://doi.org/10.1090/S0025-5718-1993-1155573-5
MathSciNet review: 1155573
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A spherical design is a point configuration on the sphere, which yields exact equal-weight quadrature formulae for polynomials up to a given degree. Until now only very specific constructions for spherical designs are known. We establish connections to spherical cap discrepancy and show some general discrepancy bounds. Furthermore, we reformulate the problem of constructing designs as an optimization problem and develop an algorithm for finding 'practical designs'.


References [Enhancements On Off] (What's this?)

  • [1] J. Beck and W. Chen, Irregularities of distribution, Cambridge Univ. Press, 1987. MR 903025 (88m:11061)
  • [2] B. Buchberger, Applications of Gröbner bases in non-linear computational geometry, Mathematical Aspects of Scientific Software (J.R. Rice, ed.), Springer, Berlin, 1988, pp. 59-87. MR 938107 (89g:13001)
  • [3] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and design, Geom. Dedicata 6 (1977), 363-388. MR 0485471 (58:5302)
  • [4] H. Fischer, Beiträge zur Computerzahlentheorie: Lineare Rekursionen, Designs und Diophantische Gleichungen, Thesis, Techn. Univ. Vienna, 1992.
  • [5] W. Gautschi, Advances in Chebyshev quadrature, Lecture Notes in Math., vol. 506, Springer, Berlin, 1976, pp. 100-121. MR 0468117 (57:7956)
  • [6] C. D. Godsil, Polynomial spaces, Discrete Math. 73 (1988/89), 71-88. MR 974814 (89k:05022)
  • [7] P. J. Grabner, Erdös-Turán type discrepancy bounds, Monatsh. Math. 111 (1991), 127-135. MR 1100852 (92f:11108)
  • [8] E. Hlawka, Beiträge zur Theorie der Gleichverteilung und ihren Anwendungen I-V, Österr. Akad. Wiss. SB II 197 (1988), 1-154, 209-289. MR 1004374 (91c:11040a)
  • [9] L. K. Hua and Y. Wang, Application of number theory to numerical analysis, Springer-Verlag, 1981. MR 617192 (83g:10034)
  • [10] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974. MR 0419394 (54:7415)
  • [11] A. Lubotzky, R. Phillips, and P. Sarnak, Hecke operators and distributing points on the sphere I, II, Comm. Pure Appl. Math. 39 (1986), 149-186; 40 (1987), 401-420. MR 861487 (88m:11025a)
  • [12] A.D. MacLaren, Optimal numerical integration on a sphere, Math. Comp. 17 (1963), 361-383. MR 0159418 (28:2635)
  • [13] C. Müller, Spherical harmonics, Lecture Notes in Math., vol. 17 Springer-Verlag, Berlin, 1966. MR 0199449 (33:7593)
  • [14] I. P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin, 1955. MR 0069915 (16:1100d)
  • [15] D. J. Newman and H. S. Shapiro, Jackson's theorem in higher dimensions, Über Approximationstheorie (P. L. Butzer and J. Korevaar, eds.), ISNM, vol. 5, Birkhäuser-Verlag, Basel, 1964, pp. 208-219. MR 0182828 (32:310)
  • [16] J. J. Seidel, Integration over spheres, Discrete Geometry (A. Florian, ed.), Salzburg, 1985, pp. 233-242.
  • [17] P. D. Seymour and T. Zaslavsky, Averaging sets: A generalization of mean values and spherical designs, Adv. in Math. 52 (1984), 213-240. MR 744857 (85m:05031)
  • [18] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1939.
  • [19] G. Wagner, On averaging sets, Monatsh. Math. 111 (1991), 69-78. MR 1089385 (92e:65031)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11K45, 65C05

Retrieve articles in all journals with MSC: 11K45, 65C05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1155573-5
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society