Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations


Authors: Tian Xiao Zhou and Min Fu Feng
Journal: Math. Comp. 60 (1993), 531-543
MSC: Primary 65N30; Secondary 76D05, 76M10
DOI: https://doi.org/10.1090/S0025-5718-1993-1164127-6
MathSciNet review: 1164127
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a Galerkin/least squares-type finite element method is proposed and analyzed for the stationary Navier-Stokes equations. The method is consistent and stable for any combination of discrete velocity and pressure spaces (without requiring a Babuška-Brezzi stability condition). The existence, uniqueness and convergence (at optimal rate) of the discrete solution is proved in the case of sufficient viscosity (or small data).


References [Enhancements On Off] (What's this?)

  • [1] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Lecture Notes in Math., vol. 749, Springer-Verlag, Berlin and New York, 1981. MR 851383 (88b:65129)
  • [2] T. J. R. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation, Comput. Methods Appl. Mech. Engrg. 59 (1986), 85-99. MR 868143 (89j:76015d)
  • [3] T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well posed boundary conditions, symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engrg. 65 (1987), 85-96. MR 914609 (89j:76015g)
  • [4] F. Brezzi and J. Douglas, Jr., Stabilized mixed methods for the Stokes problem, Numer. Math. 53 (1988), 225-235. MR 946377 (89g:65138)
  • [5] J. Douglas, Jr. and J. P. Wang, An absolutely stabilized finite element method for the Stokes problem, Math. Comp. 52 (1989), 495-508. MR 958871 (89j:65069)
  • [6] L. P. Franca and T. J. Hughes, Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg. 69 (1989), 89-129. MR 953593 (90b:65202)
  • [7] T. J. Hughes and T. E. Tezduyar, Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. Methods Appl. Mech. Engrg. 45 (1984), 217-284. MR 759810 (86a:65102)
  • [8] C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp. 47 (1986), 1-18. MR 842120 (88b:65133)
  • [9] P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 84 (1990), 175-192. MR 1087615 (91k:76109)
  • [10] Tian-Xiao Zhou, Stabilized Galerkin finite element methods based on homology family of variational principles. II. Application to the Navier-Stokes equations, Math. Numer. Sinica (to appear). MR 761082 (85j:65041)
  • [11] G. Lube and L. Tobiska, A nonconforming finite element method of streamline diffusion type for the incompressible Navier-Stokes equations, J. Comput. Math. 8 (1990), 147-158. MR 1299217 (95f:76064)
  • [12] L. Tobiska and G. Lube, A modified streamline diffusion method for solving the stationary N-S equations, Preprint.
  • [13] Tian-Xiao Zhou, Min-Fu Feng, and Hua-Xing Xiong, A new approach to stability of finite elements under divergence constraints, J. Comput. Math. 10 (1992), 1-15. MR 1167923 (93g:65149)
  • [14] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation for computational fluid dynamcis. VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg. 89 (1989), 173-189. MR 1002621 (90h:76007)
  • [15] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [16] L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods. I. Application to the advective-diffusion model, Preprint, Sept. 1990.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 76D05, 76M10

Retrieve articles in all journals with MSC: 65N30, 76D05, 76M10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1164127-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society