Orthogonal spline collocation Laplace-modified and alternating-direction methods for parabolic problems on rectangles

Authors:
Bernard Bialecki and Ryan I. Fernandes

Journal:
Math. Comp. **60** (1993), 545-573

MSC:
Primary 65N35; Secondary 65M12, 65M70, 65N12

MathSciNet review:
1176704

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complete stability and convergence analysis is given for two- and three-level, piecewise Hermite bicubic orthogonal spline collocation, Laplace-modified and alternating-direction schemes for the approximate solution of linear parabolic problems on rectangles. It is shown that the schemes are unconditionally stable and of optimal-order accuracy in space and time.

**[1]**V. K. Bangia, C. Bennett, A. Reynolds, R. Raghavan, and G. Thomas,*Alternating direction collocation methods for simulating reservoir performance*, Paper SPE 7414, 53rd SPE Fall Technical Conference and Exhibition, Houston, Texas, 1978.**[2]**B. Bialecki and X. C. Cai, -*error bounds for**piecewise Hermite bicubic orthogonal spline collocation schemes*, submitted.**[3]**Bernard Bialecki, Graeme Fairweather, and Karin R. Bennett,*Fast direct solvers for piecewise Hermite bicubic orthogonal spline collocation equations*, SIAM J. Numer. Anal.**29**(1992), no. 1, 156–173. MR**1149090**, 10.1137/0729010**[4]**B. Bialecki and R. I. Fernandes,*Implementation of orthogonal spline collocation Laplace-modified and alternating-direction methods for parabolic problems*, in preparation.**[5]**G. Birkhoff, M. H. Schultz, and R. S. Varga,*Piecewise Hermite interpolation in one and two variables with applications to partial differential equations*, Numer. Math.**11**(1968), 232–256. MR**0226817****[6]**J. F. Botha and M. Celia,*The alternating direction collocation approximation*, Proceedings of the eighth South African symposium on numerical mathematics (Durban, 1982) Univ. Natal, Durban, 1982, pp. 13–26. MR**749407****[7]**M. A. Celia, L. R. Ahuja, and G. F. Pinder,*Orthogonal collocation and alternating-direction methods for unsaturated flow*, Adv. Water Resources**10**(1987), 178-187.**[8]**M. A. Celia and G. F. Pinder,*Collocation solution of the transport equation using a locally enhanced alternating direction formulation*, Unification of finite element methods, North-Holland Math. Stud., vol. 94, North-Holland, Amsterdam, 1984, pp. 303–320. MR**845620**, 10.1016/S0304-0208(08)72630-6**[9]**Michael A. Celia and George F. Pinder,*An analysis of alternating-direction methods for parabolic equations*, Numer. Methods Partial Differential Equations**1**(1985), no. 1, 57–70. MR**868051**, 10.1002/num.1690010107**[10]**Michael A. Celia and George F. Pinder,*Generalized alternating-direction collocation methods for parabolic equations. I. Spatially varying coefficients*, Numer. Methods Partial Differential Equations**6**(1990), no. 3, 193–214. MR**1062376**, 10.1002/num.1690060302**[11]**Michael A. Celia and George F. Pinder,*Generalized alternating-direction collocation methods for parabolic equations. II. Transport equations with application to seawater intrusion problems*, Numer. Methods Partial Differential Equations**6**(1990), no. 3, 215–230. MR**1062377**, 10.1002/num.1690060303**[12]**Michael A. Celia and George F. Pinder,*Generalized alternating-direction collocation methods for parabolic equations. III. Nonrectangular domains*, Numer. Methods Partial Differential Equations**6**(1990), no. 3, 231–243. MR**1062378**, 10.1002/num.1690060304**[13]**M. A. Celia, G. F. Pinder, and L. J. Hayes,*Alternating-direction collocation solution to the transport equation*, Proc. Third Internat. Conf. Finite Elements in Water Resources (S. Y. Wang et al., eds.), Univ. of Mississippi, Oxford, MS, 1980, pp. 3.36-3.48.**[14]**John H. Cerutti and Seymour V. Parter,*Collocation methods for parabolic partial differential equations in one space dimension*, Numer. Math.**26**(1976), no. 3, 227–254. MR**0433922****[15]**J. E. Dendy Jr.,*An analysis of some Galerkin schemes for the solution of nonlinear time-dependent problems*, SIAM J. Numer. Anal.**12**(1975), no. 4, 541–565. MR**0418477****[16]**J. C. Díaz, G. Fairweather, and P. Keast,*FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination*, ACM Trans. Math. Software**9**(1983), no. 3, 358–375. MR**791972**, 10.1145/356044.356053**[17]**J. C. Díaz, G. Fairweather, and P. Keast,*Algorithm 603. COLROW and ARCECO: FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination*, ACM Trans. Math. Software**9**(1983), no. 3, 376–380. MR**791973**, 10.1145/356044.356054**[18]**Jim Douglas Jr. and Todd Dupont,*Alternating-direction Galerkin methods on rectangles*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 133–214. MR**0273830****[19]**Jim Douglas Jr. and Todd Dupont,*Collocation methods for parabolic equations in a single space variable*, Lecture Notes in Mathematics, Vol. 385, Springer-Verlag, Berlin-New York, 1974. Based on 𝐶¹-piecewise-polynomial spaces. MR**0483559****[20]**R. I. Fernandes,*Alternating direction finite element methods for solving time dependent problems*, Ph. D. Thesis, University of Kentucky, Lexington, KY, 1991.**[21]**Ryan I. Fernandes and Graeme Fairweather,*Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables*, Numer. Methods Partial Differential Equations**9**(1993), no. 2, 191–211. MR**1203061**, 10.1002/num.1690090207**[22]**Linda J. Hayes,*An alternating-direction collocation method for finite element approximations on rectangles*, Comput. Math. Appl.**6**(1980), no. 1, Special Issue, 45–50. MR**604084**, 10.1016/0898-1221(80)90058-9**[23]**-,*A comparison of alternating-direction collocation methods for the transport equation*, New Concepts in Finite Element Analysis (T. J. R. Hughes et al., eds.), AMS-Vol. 44, American Society of Mechanical Engineers, New York, 1981, pp. 169-177.**[24]**Milton Lees,*A priori estimates for the solutions of difference approximations to parabolic partial differential equations*, Duke Math. J.**27**(1960), 297–311. MR**0121998****[25]**Peter Percell and Mary Fanett Wheeler,*A 𝐶¹ finite element collocation method for elliptic equations*, SIAM J. Numer. Anal.**17**(1980), no. 5, 605–622. MR**588746**, 10.1137/0717050**[26]**A. A. Samarskiĭ,*Teoriya raznostnykh skhem*, Izdat. “Nauka”, Moscow, 1977 (Russian). MR**0483271****[27]**A. A. Samarskii and A. B. Gulin,*Stability of difference schemes*, "Nauka", Moscow, 1973 (Russian).

Retrieve articles in *Mathematics of Computation*
with MSC:
65N35,
65M12,
65M70,
65N12

Retrieve articles in all journals with MSC: 65N35, 65M12, 65M70, 65N12

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1993-1176704-7

Article copyright:
© Copyright 1993
American Mathematical Society