Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Stability of the discretized pantograph differential equation
HTML articles powered by AMS MathViewer

by Martin Buhmann and Arieh Iserles PDF
Math. Comp. 60 (1993), 575-589 Request permission

Abstract:

In this paper we study discretizations of the general pantograph equation \[ y’(t) = ay(t) + by(\theta (t)) + cy’(\phi (t)),\quad t \geq 0,\quad y(0) = {y_0},\], where a, b, c, and ${y_0}$ are complex numbers and where $\theta$ and $\phi$ are strictly increasing functions on the nonnegative reals with $\theta (0) = \phi (0) = 0$ and $\theta (t) < t, \phi (t) < t$ for positive t. Our purpose is an analysis of the stability of the numerical solution with trapezoidal rule discretizations, and we will identify conditions on a, b, c and the stepsize which imply that the solution sequence $\{ {y_n}\} _{n=0}^\infty$ is bounded or that it tends to zero algebraically, as a negative power of n.
References
  • Richard Bellman and Kenneth L. Cooke, Asymptotic behavior of solutions of differential-difference equations, Mem. Amer. Math. Soc. 35 (1959), 91 pp. (1959). MR 111917
  • Kenneth L. Cooke, Differential-difference equations, Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, pp. 155–171. MR 0146481
  • M. D. Buhmann and A. Iserles, On the dynamics of a discretized neutral equation, IMA J. Numer. Anal. 12 (1992), no. 3, 339–363. IMA Conference on Dynamics of Numerics and Numerics of Dynamics (Bristol, 1990). MR 1181255, DOI 10.1093/imanum/12.3.339
  • M. Buhmann and A. Iserles, Numerical analysis of functional equations with a variable delay, Numerical analysis 1991 (Dundee, 1991) Pitman Res. Notes Math. Ser., vol. 260, Longman Sci. Tech., Harlow, 1992, pp. 17–33. MR 1177226
  • Jack Carr and Janet Dyson, The functional differential equation $y’(x)=ay(\lambda x)+by(x)$, Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/75), 165–174 (1976). MR 442421, DOI 10.1017/s0308210500016632
  • G. A. Derfel, Kato problem for functional-differential equations and difference Schrödinger operators, Order, disorder and chaos in quantum systems (Dubna, 1989) Oper. Theory Adv. Appl., vol. 46, Birkhäuser, Basel, 1990, pp. 319–321. MR 1124676
  • A. Feldstein, A. Iserles, and D. Levin, Embedding of delay equations into an infinite-dimensional ODE system, Technical Report DAMTP NA21, University of Cambridge, 1991.
  • Alan Feldstein and Zdzisław Jackiewicz, Unstable neutral functional-differential equations, Canad. Math. Bull. 33 (1990), no. 4, 428–433. MR 1091347, DOI 10.4153/CMB-1990-070-5
  • L. Fox, D. F. Mayers, J. R. Ockendon, and A. B. Tayler, On a functional differential equation, J. Inst. Math. Appl. 8 (1971), 271–307. MR 301330
  • Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. MR 0508721
  • G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
  • A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math. 4 (1993), no. 1, 1–38. MR 1208418, DOI 10.1017/S0956792500000966
  • A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations, Technical Report DAMTP NA1, University of Cambridge, 1992.
  • Tosio Kato and J. B. McLeod, The functional-differential equation $y^{\prime } \,(x)=ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc. 77 (1971), 891–937. MR 283338, DOI 10.1090/S0002-9904-1971-12805-7
  • Kurt Mahler, On a special functional equation, J. London Math. Soc. 15 (1940), 115–123. MR 2921, DOI 10.1112/jlms/s1-15.2.115
  • G. Meinardus and G. Nürnberger, Approximation theory and numerical methods for delay equations, Delay Equations, Approximation and Application (G. Meinardus and G. Nürnberger, eds.), Birkhäuser-Verlag, Basel, 1986.
  • Grainger R. Morris, Alan Feldstein, and Ernie W. Bowen, The Phragmén-Lindelöf principle and a class of functional differential equations, Ordinary differential equations (Proc. NRL-MRC Conf., Math. Res. Center, Naval Res. Lab., Washington, D.C., 1971) Academic Press, New York, 1972, pp. 513–540. MR 0427771
  • J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London Ser. A 322 (1971), 447-468. G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. 1, Springer-Verlag, Berlin and New York, 1972.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65L20, 34K20
  • Retrieve articles in all journals with MSC: 65L20, 34K20
Additional Information
  • © Copyright 1993 American Mathematical Society
  • Journal: Math. Comp. 60 (1993), 575-589
  • MSC: Primary 65L20; Secondary 34K20
  • DOI: https://doi.org/10.1090/S0025-5718-1993-1176707-2
  • MathSciNet review: 1176707