Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The minimum discriminant of totally real algebraic number fields of degree $ 9$ with cubic subfields


Author: Hiroyuki Fujita
Journal: Math. Comp. 60 (1993), 801-810
MSC: Primary 11R16; Secondary 11R29, 11R80, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1993-1176709-6
MathSciNet review: 1176709
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: With the help of the computer language UBASIC86, the minimum discriminant $ d(K)$ of totally real algebraic number fields K of degree 9 with cubic subfields F is determined. It is given by $ d(K) = 16240385609$. The defining equation for K is given by $ f(x) = {x^9} - {x^8} - 9{x^7} + 4{x^6} + 26{x^5} - 2{x^4} - 25{x^3} - {x^2} + 7x + 1$, and K is uniquely determined by $ d(K)$ up to Q-isomorphism. The field K has the cubic subfield F with $ d(F) = 49$ defined by the polynomial $ f(x) = {x^3} + {x^2} - 2x - 1$.


References [Enhancements On Off] (What's this?)

  • [1] M. Pohst, Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper, J. Reine Angew. Math. 278/279 (1975), 278-300. MR 0387242 (52:8085)
  • [2] -, The minimum discriminant of seventh degree totally real algebraic number fields, Number Theory and Algebra (H. Zassenhaus, ed.), Academic Press, New York 1977, pp. 235-240. MR 0466069 (57:5952)
  • [3] H. Zassenhaus, On Hensel factorization. II, Sympos. Math. 15 (1975), 499-513. MR 0389870 (52:10700)
  • [4] M. Pohst, J. Martinet, and F. Diaz y Diaz, The minimum discriminant of totally real octic fields, J. Number Theory, preprint. MR 1072461 (91g:11128)
  • [5] J. Martinet, Méthodes géométriques dans la recherche des petits discriminants, Séminaire de Théorie des Nombres (1983-84), Paris, pp. 147-179. MR 902831 (88h:11083)
  • [6] C. L. Siegel, The trace of totally positive and real algebraic integers, Ann. of Math. 46 (1945), 302-312. MR 0012092 (6:257a)
  • [7] K. Takeuchi, Totally real algebraic number fields of degree 5 and 6 with small discriminant, Saitama Math. J. 2 (1984), 21-32. MR 769447 (86i:11060)
  • [8] A. M. Odlyzko, Unconditional bounds for discriminants, preprint.
  • [9] Walter D. Neumann, UBASIC: a public-domain BASIC for mathematics, Notices Amer. Math. Soc. 36 (1989), 557-559.
  • [10] L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math., vol. 83, Springer-Verlag, Berlin and New York, 1982. MR 718674 (85g:11001)
  • [11] F. Diaz y Diaz, Petits discriminants des corps de nombres totalement imaginaires de degré 8, J. Number Theory 25 (1987), 34-52. MR 871167 (88a:11115)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R16, 11R29, 11R80, 11Y40

Retrieve articles in all journals with MSC: 11R16, 11R29, 11R80, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1176709-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society