Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Chebyshev expansions for modified Struve and related functions


Author: Allan J. MacLeod
Journal: Math. Comp. 60 (1993), 735-747
MSC: Primary 65D20; Secondary 33C10
DOI: https://doi.org/10.1090/S0025-5718-1993-1176713-8
MathSciNet review: 1176713
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the approximation of the modified Struve functions $ {{\mathbf{L}}_0}$ and $ {{\mathbf{L}}_1}$, and the related functions $ {I_0} - {{\mathbf{L}}_0}$ and $ {I_1} - {{\mathbf{L}}_1}$, where $ {I_0},{I_1}$ are modified Bessel functions. Chebyshev expansions are derived to an accuracy of 20D for these functions. By using generalized bilinear and biquadratic maps we optimize the number of coefficients for 20D accuracy.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
  • [2] A. R. Ahmadi and S. E. Widnall, Unsteady lifting-line theory as a singular-perturbation problem, J. Fluid Mech. 153 (1985), 59-81.
  • [3] C. W. Clenshaw, Chebyshev series for mathematical functions, NPL Math Tables 5, Her Majesty's Stationery Office, London, 1962. MR 0142793 (26:362)
  • [4] R. N. Desmarais, Accurate numerical evaluation of modified Struve functions occurring in unsteady aerodynamics, J. Aircraft 16 (1979), 441-447.
  • [5] M. H. Hirata, Flow near the bow of a steadily turning ship, J. Fluid Mech. 71 (1975), 283-291.
  • [6] Y. L. Luke, The special functions and their approximations. Vol. 2, Academic Press, New York, 1968.
  • [7] J. L. Schonfelder, Chebyshev expansions for the error and related functions, Math. Comp. 32 (1978), 1232-1240. MR 0494846 (58:13630)
  • [8] J. L. Schonfelder and M. Razaz, Error control with polynomial approximation, IMA J. Numer. Anal. 1 (1980), 105-114. MR 607250 (83d:65043)
  • [9] R. E. Scraton, A method for improving the convergence of Chebyshev series, Comput. J. 13 (1970), 202-203. MR 0260144 (41:4772)
  • [10] D. C. Shaw, Perturbational results for diffraction of water waves by nearly vertical barriers, IMA J. App. Math. 34 (1985), 99-117. MR 785852 (86e:76019)
  • [11] J. V. Wehausen and E. V. Laitone, Surface waves, Handbuch der Physik, vol. 9, Springer-Verlag, Berlin 1960. MR 0119656 (22:10417)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20, 33C10

Retrieve articles in all journals with MSC: 65D20, 33C10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1176713-8
Keywords: Struve functions, Chebyshev expansions, testing
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society