Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The structure of the projective indecomposable modules of the Suzuki group $ {\rm Sz}(8)$ in characteristic $ 2$

Author: Gerhard J. A. Schneider
Journal: Math. Comp. 60 (1993), 779-786, S29
MSC: Primary 20C20; Secondary 20C40
MathSciNet review: 1181331
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes the socle series of the projective indecomposable modules and of tensor products of simple modules for the simple group $ {\text{Sz}}(8)$ in characteristic 2. The results have been obtained by computational means and the various steps are described. The main algorithm was modified to allow for parallel execution on a network of workstations. This made possible the effective handling of modules of degree 4030.

References [Enhancements On Off] (What's this?)

  • [1 J] John J. Cannon, An introduction to the group theory language, Cayley, Computational group theory (Durham, 1982) Academic Press, London, 1984, pp. 145–183. MR 760656
  • [2] Leonard Chastkofsky and Walter Feit, On the projective characters in characteristic 2 of the groups 𝑆𝑢𝑧(2^{𝑚}) and 𝑆𝑝₄(2ⁿ), Inst. Hautes Études Sci. Publ. Math. 51 (1980), 9–35. MR 573820
  • [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
  • [4] P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910
  • [5] R. A. Parker, The modular atlas, preprint.
  • [6] Gerhard J. A. Schneider, Computing with endomorphism rings of modular representations, J. Symbolic Comput. 9 (1990), no. 5-6, 607–636. Computational group theory, Part 1. MR 1075427, 10.1016/S0747-7171(08)80078-8
  • [7] -, Computing socle series of modules and submodule lattices, preprint.
  • [8] P. Sin, Extensions of simple modules for $ {\text{Sp}_4}({2^n})$ and $ {\text{Suz}}({2^m})$, preprint.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20C20, 20C40

Retrieve articles in all journals with MSC: 20C20, 20C40

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society