Good parameters for a class of node sets in quasi-Monte Carlo integration

Authors:
Tom Hansen, Gary L. Mullen and Harald Niederreiter

Journal:
Math. Comp. **61** (1993), 225-234

MSC:
Primary 11K45; Secondary 65D32

DOI:
https://doi.org/10.1090/S0025-5718-1993-1182244-1

MathSciNet review:
1182244

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For we determine good parameters in a general construction of node sets for *s*-dimensional quasi-Monte Carlo integration recently introduced by the third author. Some of the parameters represent optimal choices in this construction and lead to improvements on node sets obtained by earlier techniques.

**[1]**D. A. André, G. L. Mullen, and H. Niederreiter,*Figures of merit for digital multistep pseudorandom numbers*, Math. Comp.**54**(1990), 737-748. MR**1011436 (91d:65012)****[2]**P. Bratley, B. L. Fox, and H. Niederreiter,*Implementation and tests of low-discrepancy sequences*, ACM Trans. Modeling and Computer Simultation**2**(1992), 195-213.**[3]**L. K. Hua and Y. Wang,*Applications of number theory to numerical analysis*, Springer, Berlin, 1981. MR**617192 (83g:10034)****[4]**G. Larcher,*Nets obtained from rational functions over finite fields*, Acta Arith.**63**(1993), 1-13. MR**1201615 (94c:11067)****[5]**D. H. Lehmer,*Mathematical methods in large-scale computing units*, Proc. 2nd Sympos. on Large-Scale Digital Calculating Machinery (Cambridge, MA, 1949), Harvard Univ. Press, Cambridge, MA, 1951, pp. 141-146. MR**0044899 (13:495f)****[6]**G. L. Mullen and H. Niederreiter,*Optimal characteristic polynomials for digital multistep pseudorandom numbers*, Computing**39**(1987), 155-163. MR**919665 (88m:65011)****[7]**G. L. Mullen and G. Whittle,*Point sets with uniformity properties and orthogonal hypercubes*, Monatsh. Math.**113**(1992), 265-273. MR**1169232 (93h:11086)****[8]**H. Niederreiter,*Quasi-Monte Carlo methods and pseudo-random numbers*, Bull. Amer. Math. Soc.**84**(1978), 957-1041. MR**508447 (80d:65016)****[9]**-,*Multidimensional numerical integration using pseudorandom numbers*, Math. Programming Study**27**(1986), 17-38. MR**836749 (87m:11075)****[10]**-,*Rational functions with partial quotients of small degree in their continued fraction expansion*, Monatsh. Math.**103**(1987), 269-288. MR**897953 (88h:12002)****[11]**-,*Point sets and sequences with small discrepancy*, Monatsh. Math.**104**(1987), 273-337. MR**918037 (89c:11120)****[12]**-,*Low-discrepancy and low-dispersion sequences*, J. Number Theory**30**(1988), 51-70. MR**960233 (89k:11064)****[13]**-,*Low-discrepancy point sets obtained by digital constructions over finite fields*, Czechoslovak Math. J.**42**(1992), 143-166. MR**1152177 (93c:11055)****[14]**-,*Random number generation and quasi-Monte Carlo methods*, SIAM, Philadelphia, PA, 1992. MR**1172997 (93h:65008)****[15]**-,*Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes*, Discrete Math.**106/107**(1992), 361-367. MR**1181933 (94f:11070)****[16]**-,*Finite fields, pseudorandom numbers, and quasirandom points*, Proc. Internat. Conf. on Finite Fields, Coding Theory, and Advances in Comm. and Comp. (Las Vegas, 1991), Dekker, New York, 1993, pp. 375-394. MR**1199844 (94a:11121)****[17]**I. M. Sobol',*The distribution of points in a cube and the approximate evaluation of integrals*, Zh. Vychisl. Mat. i Mat. Fiz.**7**(1967), 784-802. (Russian) MR**0219238 (36:2321)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11K45,
65D32

Retrieve articles in all journals with MSC: 11K45, 65D32

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1993-1182244-1

Article copyright:
© Copyright 1993
American Mathematical Society