Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The mathematical work of Morgan Ward


Author: D. H. Lehmer
Journal: Math. Comp. 61 (1993), 307-311
MSC: Primary 01A70; Secondary 11-03
DOI: https://doi.org/10.1090/S0025-5718-1993-1182245-3
MathSciNet review: 1182245
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A generalization of recurrents, Bull. Amer. Math. Soc. 33 (1927), 477-492. MR 1561403
  • [2] General arithmetic, Proc. Nat. Acad. Sci. U.S.A. 13 (1927), 748-749.
  • [3] Postulates for an abstract arithmetic, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 907-911.
  • [4] A simplification of certain problems in arithmetical division, Amer. Math. Monthly 35 (1928), 9-14. MR 1521339
  • [5] On certain functional relations, Amer. Math. Monthly 36 (1929), 426-431. MR 1521822
  • [6] Certain expansions involving doubly infinite series, Ann. of Math. (2) 30 (1929), 578-582.
  • [7] A certain class of polynomials, Ann. of Math. (2) 31 (1930), 43-51. MR 1502917
  • [8] A generalization of a familiar theorem concerning prime numbers, J. London Math. Soc. 5 (1930), 106-107.
  • [9] The reversion of a power series, Rend. Circ. Mat. Palermo 54 (1930), 42-46.
  • [10] Postulates for the inverse operations in a group, Trans. Amer. Math. Soc. 32 (1930), 520-526. MR 1501550
  • [11] The characteristic number of a sequence of integers satisfying a linear recursion relation, Trans. Amer. Math. Soc. 33 (1931), 153-165. MR 1501582
  • [12] The algebra of recurring series, Ann. of Math. (2) 32 (1931), 1-9. MR 1502975
  • [13] Some arithmetical properties of sequences satisfying a linear recursion relation, Ann. of Math. (2) 32 (1931), 734-738. MR 1503026
  • [14] The distribution of residues in a sequence satisfying a linear recursion relation, Trans. Amer. Math. Soc. 33 (1931), 166-190. MR 1501583
  • [15] Conditions for the solubility of the diophantine equation $ {x^2} - M{y^2} = - 1$, Trans. Amer. Math. Soc. 33 (1931), 712-718. MR 1501611
  • [16] The linear form of numbers represented by a homogeneous polynomial in any number of variables, Ann. of Math. (2) 33 (1932), 324-326. MR 1503056
  • [17] On the behaviour of non-static models of the universe when the cosmological term is omitted, (with R. C. Tolman), Phys. Rev. 39 (1932), 835-843.
  • [18] A type of multiplicative diophantine system, Amer. J. Math. 55 (1933), 67-76. MR 1506944
  • [19] A property of recurring series, Proc. Nat. Acad. Sci. U.S.A. 19 (1933), 914-916.
  • [20] The cancellation law in the theory of congruences to a double modulus, Trans. Amer. Math. Soc. 35 (1933), 254-260. MR 1501682
  • [21] The arithmetical theory of linear recurring series, Trans. Amer. Math. Soc. 35 (1933), 600-628. MR 1501705
  • [22] A certain class of trigonometric integrals, Amer. Math. Monthly 40 (1933), 340-346. MR 1522833
  • [23] The representation of Stirling's numbers and Stirling's polynomials as sums of factorials, Amer. J. Math. 56 (1934), 87-95. MR 1507004
  • [24] On the vanishing of the sum of the $ N^{th}$ powers of the roots of a cubic equation, Amer. Math. Monthly 41 (1934), 313-316. MR 1523091
  • [25] Note on the period of a mark in a finite field, Bull. Amer. Math. Soc. 40 (1934), 279-281. MR 1562836
  • [26] Note on an arithmetical property of recurring series, Math. Z. 39 (1934), 211-214.
  • [27] An arithmetical property of recurring series of the second order, Bull. Amer. Math. Soc. 40 (1934), 825-828. MR 1562981
  • [28] Note on the iteration of functions of one variable, Bull. Amer. Math. Soc. 40 (1934), 688-690. MR 1562953
  • [29] The numerical evaluation of a class of trigonometric series, Amer. Math. Monthly 41 (1934), 563-565.
  • [30] An enumerative problem in the arithmetic of linear recurring series, Trans. Amer. Math. Soc. 37 (1935), 435-440. MR 1501795
  • [31] A determination of all possible systems of strict implication, Amer. J. Math. 57 (1935), 261-266. MR 1507068
  • [32] Conditions for factorization in a set closed under a single operation, Ann. of Math. (2) 36 (1935), 36-39.
  • [33] On the factorization of polynomials to a prime modulus, Ann. of Math. (2) 36 (1935), 870-874. MR 1503257
  • [34] The diophantine equation $ {X^2} - D{Y^2} = {Z^m}$, Trans. Amer. Math. Soc. 38 (1935), 447-457.
  • [35] A calculus of sequences, Amer. J. Math. 58 (1936), 255-266. MR 1507149
  • [36] The continuous iteration of real functions, Bull. Amer. Math. Soc. 42 (1936), 393-396. MR 1563308
  • [37] The null divisors of linear recurring series, Duke Math. J. 2 (1936), 472-476. MR 1545940
  • [38] Note on divisibility sequences, Bull. Amer. Math. Soc. 42 (1936), 843-845. MR 1563448
  • [39] Linear divisibility sequences, Trans. Amer. Math. Soc. 41 (1937), 276-286. MR 1501902
  • [40] Arithmetic functions on rings, Ann. of Math. (2) 38 (1937), 725-732. MR 1503363
  • [41] Some arithmetical applications of residuation, Amer. J. Math. 59 (1937), 921-926. MR 1507292
  • [42] Residuation in structures over which a multiplication is defined, Duke Math. J. 3 (1937), 627-636. MR 1546017
  • [43] Arithmetical properties of sequences in rings, Ann. of Math. (2) 39 (1938), 210-219. MR 1503399
  • [44] Residuated lattices, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 162-164.
  • [45] The law of apparition of primes in a Lucasian sequence, Trans. Amer. Math. Soc. 44 (1938), 68-86. MR 1501963
  • [46] Structure residuation, Ann. of Math. (2) 39 (1938), 558-568. MR 1503424
  • [47] A note on divisibility sequences, Bull. Amer. Math. Soc. 45 (1939), 334-336. MR 1563977
  • [48] Evaluations over residuated structures (with R. P. Dilworth), Ann. of Math. (2) 40 (1939), 328-338. MR 1503460
  • [49] Residuated lattices (with R. P. Dilworth), Trans. Amer. Math. Soc. 45 (1939), 335-354. MR 1501995
  • [50] The algebra of lattice functions, Duke Math. J. 5 (1939), 357-371. MR 1546130
  • [51] Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783-787. MR 0000010 (1:2b)
  • [52] A characterization of Dedekind structures, Bull. Amer. Math. Soc. 45 (1939), 448-451. MR 1564002
  • [53] Note on the general rational solution of the equation $ a{x^2} - b{y^2} = c{z^3}$, Amer. J. Math. 61 (1939), 788-790. MR 0000023 (1:4f)
  • [54] The lattice theory of ova (with R. P. Dilworth), Ann. of Math. (2) 40 (1939), 600-608. MR 0000011 (1:2c)
  • [55] A characterization of Boolean algebras (with Garrett Birkhoff), Ann. of Math. (2) 40 (1939), 609-610. MR 0000009 (1:2a)
  • [56] Residuated distributive lattices, Duke Math. J. 6 (1940), 641-651. MR 0002845 (2:120f)
  • [57] The arithmetical properties of modular lattices, Rev. Ci. Lima 430 (1941), 593-603.
  • [58] The closure operators of a lattice, Ann. of Math. (2) 43 (1942), 191-196. MR 0006144 (3:261e)
  • [59] Euler's three biquadrate problem, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 125-127. MR 0012104 (6:259e)
  • [60] Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31-74. MR 0023275 (9:332j)
  • [61] Euler's problem on sums of three fourth powers, Duke Math. J. 15 (1948), 827-837. MR 0027287 (10:283f)
  • [62] The law of repetition of primes in an elliptic divisibility sequence, Duke Math. J. 15 (1948), 941-946. MR 0027286 (10:283e)
  • [63] A generalized integral test for convergence of series, Amer. Math. Monthly 56 (1949), 170-172. MR 1527199
  • [64] Note on a paper by C. E. Dickart, R. P. Dilworth and Morgan Ward, Bull. Amer. Math. Soc. 55 (1949), 1141. MR 0032579 (11:309g)
  • [65] Arithmetical properties of the elliptic polynomials arising from the real multiplication of the Jacobi functions, Amer. J. Math. 72 (1950), 284-302. MR 0033857 (11:502c)
  • [66] Arithmetical properties of polynomials associated with lemniscate elliptic functions, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 359-362. MR 0036776 (12:159h)
  • [67] A class of soluble diophantine equations, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 113-114. MR 0041870 (13:13h)
  • [68] Prime divisors of second order recurring series, Duke Math. J. 21 (1954), 607-614. MR 0064073 (16:221f)
  • [69] The maximal prime divisors of linear recurrences, Canad. J. Math. 6 (1954), 455-462. MR 0066408 (16:569i)
  • [70] Cyclotomy and the converse of Fermat's theorem, Amer. Math. Monthly 61 (1954), 564. MR 0063397 (16:115a)
  • [71] The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236. MR 0071446 (17:127i)
  • [72] On the number of vanishing terms in an integral cubic recurrence, Amer. Math. Monthly 62 (1955), 155-160. MR 0067136 (16:675b)
  • [73] The law of apparition and repetition of primes in a cubic sequence, Trans. Amer. Math. Soc. 79 (1955), 72-90. MR 0068579 (16:906d)
  • [74] The mappings of the positive integers into themselves which preserve division, Pacific J. Math. 5 (1955), 1013-1023. MR 0075968 (17:826f)
  • [75] Tests for primality based on Sylvester's cyclotomic numbers, Pacific J. Math. 9 (1959), 1269-1272. MR 0108464 (21:7180)
  • [76] The vanishing of the homogeneous product sum of the roots of a cubic, Duke Math. J. 26 (1959), 553-662. MR 0110669 (22:1544)
  • [77] Some diophantine problems connected with linear recurrences, Report of the Institute in the Theory of Numbers, Univ. Colorado, Boulder, Colorado, 1959, pp. 250-257.
  • [78] The vanishing of the homogeneous product sum of three letters, Duke Math. J. 27 (1960), 619-624. MR 0114790 (22:5609)
  • [79] The calculation of the complete elliptic integral of the third kind, Amer. Math. Monthly 67 (1960), 205-213. MR 0136053 (24:B2092)
  • [80] The prime divisors of Fibonacci numbers, Pacific J. Math. 11 (1961), 379-386. MR 0138586 (25:2029)
  • [81] The linear p-adic recurrence of order two, Illinois J. Math. 6 (1962), 40-52. MR 0138585 (25:2028)
  • [82] Divisors of recurrent sequences (with E. C. Dade, D. W. Robinson, O. Taussky), J. Reine Angew. Math. 214/215 (1964), 180-183. MR 0161875 (28:5079)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 01A70, 11-03

Retrieve articles in all journals with MSC: 01A70, 11-03


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1182245-3
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society