New solutions of
Author:
Peter L. Montgomery
Journal:
Math. Comp. 61 (1993), 361-363
MSC:
Primary 11A07; Secondary 11A15
DOI:
https://doi.org/10.1090/S0025-5718-1993-1182246-5
MathSciNet review:
1182246
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We tabulate solutions of where
and where p is an odd prime,
.
- [1]
M. Aaltonen and K. Inkeri, Catalan's equation
and related congruences, Math. Comp. 56 (1991), 359-370. MR 1052082 (91g:11025)
- [2] J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient. Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, London and New York, 1971, pp. 213-222. MR 0314736 (47:3288)
- [3] D. H. Lehmer, On Fermat's quotient, base two, Math. Comp. 36 (1981), 289-290. MR 595064 (82e:10004)
- [4] Daniel Shanks and H. C. Williams, Gunderson's function in Fermat's last theorem, Math. Comp. 36 (1981), 291-295. MR 595065 (82g:10004)
- [5] H. C. Williams, The influence of computers in the development of number theory, Comput. Math. Appl. 8 (1982), 75-93. MR 649653 (83c:10002)
Retrieve articles in Mathematics of Computation with MSC: 11A07, 11A15
Retrieve articles in all journals with MSC: 11A07, 11A15
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1993-1182246-5
Keywords:
Diophantine equation,
Fermat quotient,
Fibonacci congruence
Article copyright:
© Copyright 1993
American Mathematical Society