Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Iterated absolute values of differences of consecutive primes


Author: Andrew M. Odlyzko
Journal: Math. Comp. 61 (1993), 373-380
MSC: Primary 11Y35; Secondary 11N05
DOI: https://doi.org/10.1090/S0025-5718-1993-1182247-7
MathSciNet review: 1182247
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {d_0}(n) = {p_n}$, the nth prime, for $ n \geq 1$, and let $ {d_{k + 1}}(n) = \vert{d_k}(n) - {d_k}(n + 1)\vert$ for $ k \geq 0,n \geq 1$. A well-known conjecture, usually ascribed to Gilbreath but actually due to Proth in the 19th century, says that $ {d_k}(1) = 1$ for all $ k \geq 1$. This paper reports on a computation that verified this conjecture for $ k \leq \pi ({10^{13}}) \approx 3 \times {10^{11}}$. It also discusses the evidence and the heuristics about this conjecture. It is very likely that similar conjectures are also valid for many other integer sequences.


References [Enhancements On Off] (What's this?)

  • [1] C. Bays and R. H. Hudson, The segmented sieve of Eratosthenes and primes in arithmetic progressions to $ {10^{12}}$, BIT 17 (1977), 121-127. MR 0447090 (56:5405)
  • [2] S. A. Bengelloun, An incremental primal sieve, Acta Inform. 23 (1986), 119-125. MR 848635 (87g:11170)
  • [3] R. P. Brent, The first occurrence of large gaps between successive primes, Math. Comp. 27 (1973), 959-963. MR 0330021 (48:8360)
  • [4] -, The first occurrence of certain large prime gaps, Math. Comp. 35 (1980), 1435-1436. MR 583521 (81g:10002)
  • [5] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1937), 23-46.
  • [6] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), 4-9. MR 0409385 (53:13140)
  • [7] R. K. Guy, Unsolved problems in number theory, Springer-Verlag, Berlin and New York, 1981. MR 656313 (83k:10002)
  • [8] R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math. Comp. (Math. Tables Aids Comp.) 13 (1959), 121-122. MR 0106209 (21:4943)
  • [9] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), 221-225. MR 783576 (86i:11049)
  • [10] C. J. Mozzochi, On the difference between consecutive primes, J. Number Theory 24 (1986), 181-187. MR 863653 (88b:11057)
  • [11] P. Pritchard, A sublinear additive sieve for finding prime numbers, Comm. ACM 24 (1981), 18-23. MR 600730 (82c:10011)
  • [12] -, Explaining the wheel sieve, Acta Inform. 17 (1982), 477-485. MR 685983 (84g:10015)
  • [13] -, Fast compact prime number sieves (among others), J. Algorithms 4 (1983), 332-344. MR 729229 (85h:11080)
  • [14] -, Linear prime-number sieves; A family tree, Sci. Comput. Programming 9 (1987), 17-35. MR 907247 (88j:11087)
  • [15] F. Proth, Sur la série des nombres premiers, Nouvelle Correspondance Mathématique 4 (1878), 236-240.
  • [16] D. Shanks, On maximal gaps between successive primes, Math. Comp. 18 (1964), 646-651. MR 0167472 (29:4745)
  • [17] W. Sierpinski, A selection of problems in the theory of numbers, Pergamon Press, Oxford, 1964. MR 0170843 (30:1078)
  • [18] J. Sorenson, An introduction to prime number sieves, Computer Science Technical Report #909, Univ. of Wisconsin-Madison, Jan. 1990.
  • [19] -, An analysis of two prime number sieves, Computer Science Technical Report #1028, Univ. of Wisconsin-Madison, June 1991.
  • [20] J. Young and A. Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224. MR 947470 (89f:11019)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y35, 11N05

Retrieve articles in all journals with MSC: 11Y35, 11N05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1182247-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society