Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Zaremba's conjecture and sums of the divisor function

Author: T. W. Cusick
Journal: Math. Comp. 61 (1993), 171-176
MSC: Primary 11J13; Secondary 11J25, 11J70
MathSciNet review: 1189517
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Zaremba conjectured that given any integer $ m > 1$, there exists an integer $ a < m$ with a relatively prime to m such that the simple continued fraction $ [0,{c_1}, \ldots ,{c_r}]$ for a/m has $ {c_i} \leq B$ for $ i = 1,2 \ldots ,r$, where B is a small absolute constant (say $ B = 5$). Zaremba was only able to prove an estimate of the form $ {c_i} \leq C\log m$ for an absolute constant C. His first proof only applied to the case where m is a prime; later he gave a very much more complicated proof for the case of composite m. Building upon some earlier work which implies Zaremba's estimate in the case of prime m, the present paper gives a much simpler proof of the corresponding estimate for composite m.

References [Enhancements On Off] (What's this?)

  • [1] T. W. Cusick, Products of simultaneous approximations of rational numbers, Arch. Math. (Basel) 53 (1989), no. 2, 154–158. MR 1004273, 10.1007/BF01198566
  • [2] H. Davenport, On a generalization of Euler's function $ \varphi (n)$, J. London Math. Soc. 7 (1932), 290-296.
  • [3] Hans Günther Kopetzky, Über die Grössenordnung der Teilerfunktion in Restklassen, Monatsh. Math. 82 (1976), no. 4, 287–295. MR 0429800
  • [4] D. H. Lehmer, Euler constants for arithmetical progressions, Acta Arith. 27 (1975), 125–142. Collection of articles in memory of Juriĭ Vladimirovič Linnik. MR 0369233
  • [5] S. K. Zaremba, La méthode des “bons treillis” pour le calcul des intégrales multiples, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 39–119 (French, with English summary). MR 0343530
  • [6] S. K. Zaremba, Good lattice points modulo composite numbers, Monatsh. Math. 78 (1974), 446–460. MR 0371845

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11J13, 11J25, 11J70

Retrieve articles in all journals with MSC: 11J13, 11J25, 11J70

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society