ZAREMBA'S CONJECTURE AND SUMS OF THE DIVISOR FUNCTION

T. W. CUSICK

Dedicated to the memory of D. H. Lehmer

Abstract. Zaremba conjectured that given any integer \(m > 1 \), there exists an integer \(a < m \) with \(a \) relatively prime to \(m \) such that the simple continued fraction \([0, c_1, \ldots, c_r]\) for \(a/m \) has \(c_i \leq B \) for \(i = 1, 2, \ldots, r \), where \(B \) is a small absolute constant (say \(B = 5 \)). Zaremba was only able to prove an estimate of the form \(c_i \leq C \log m \) for an absolute constant \(C \). His first proof only applied to the case where \(m \) is a prime; later he gave a very much more complicated proof for the case of composite \(m \). Building upon some earlier work which implies Zaremba's estimate in the case of prime \(m \), the present paper gives a much simpler proof of the corresponding estimate for composite \(m \).

1. Introduction

Apparently, Zaremba [5, pp. 69 and 76] was the first to state the following:

Conjecture. Given any integer \(m > 1 \), there is a constant \(B \) such that for some integer \(a < m \) with \(a \) relatively prime to \(m \) the simple continued fraction \([0, c_1, \ldots, c_r]\) for \(a/m \) has \(c_i \leq B \) for \(i = 1, 2, \ldots, r \).

This conjecture is still unproved, though numerical evidence suggests that \(B = 5 \) would suffice. The best result known replaces the inequality in the conjecture by \(c_i \leq C \log m \) for some constant \(C \); this was first proved by Zaremba [5, Theorem 4.6 with \(s = 2 \), p. 74] for prime values of \(m \). Later, Zaremba [6] gave a very much more complicated proof for composite values of \(m \).

As a byproduct of a more general investigation, I proved in an earlier paper [1, p. 154] that the inequality in the conjecture can be replaced by \(c_i \leq \frac{4(m/\varphi(m))^2 \log m}{\varphi(m)} \), where \(\varphi(m) \) is Euler's function. Of course, this implies \(c_i \leq C \log m \) if \(m \) is prime, but only gives \(c_i \leq C \log m (\log \log m)^2 \) in general. In the present paper, I show how the argument of [1] can be refined to eliminate the \(\log \log \) factors. The result is

Theorem 1. Given any integer \(m > 1 \), there is an integer \(a < m \) with \(a \) relatively prime to \(m \) such that the simple continued fraction \([0, c_1, \ldots, c_r]\) for \(a/m \) has \(c_i \leq 3 \log m \) for \(i = 1, 2, \ldots, r \).

Received by the editor February 13, 1992.
1991 Mathematics Subject Classification. Primary 11J13, 11J25, 11J70.
The proof is much simpler than the proof of the corresponding result in Zaremba [6]. I am grateful to Harald Niederreiter for suggesting that it would be worthwhile to publish this simpler proof.

2. Proof of Theorem 1

Let \(\|x\| \) denote the distance from \(x \) to the nearest integer. We shall actually prove the following sharpening of the case \(n = 2 \) of the theorem in [1].

Theorem 2. Given any integer \(m \geq 8 \), there exist integers \(a_1, a_2 \) relatively prime to \(m \) such that

\[
\prod_{i=1}^{2} \|ka_i/m\| > (3m \log m)^{-1} \quad \text{for each } k, \quad 1 \leq k < m.
\]

As in [1], it is easy to deduce Theorem 1 from Theorem 2: We may assume \(a_1 = 1 \) and \(a_2 = a \) in Theorem 2, since we may replace \(a_i \) by \(ba_i \) \((i = 1, 2)\), where \(ba_1 \equiv 1 \mod m \). Thus, Theorem 2 implies that for any \(m \geq 8 \) there exists an integer \(a < m \) with \(a \) relatively prime to \(m \) such that

\[
\prod_{i=1}^{2} \|ka_i/m\| > (3 \log m)^{-1} \quad \text{for each } k, \quad 1 \leq k < m.
\]

If \([0, c_1, \ldots, c_r]\) is the simple continued fraction for \(a/m \) with convergents \(p_i/q_i \) \((0 \leq i \leq r)\), then we have \(q_i \|q_i a/m\| < 1/c_{i+1} \) for \(i = 0, 1, \ldots, r-1 \). Therefore, (1) implies Theorem 1. (For \(m < 8 \) it is easy to verify Theorem 1 by calculation.)

We begin the proof of Theorem 2 with some definitions taken from [1, p. 155]. Given any integer \(m > 1 \) and positive integers \(a_1, a_2 \), we let \(L \) denote a positive real number which we shall specify later. We say that the pair \(a_1, a_2 \) is exceptional (with respect to \(m \) and \(L \)) if

\[
\prod_{i=1}^{2} \|ka_i/m\| > L^{-1} \quad \text{for each } k, \quad 1 \leq k < m.
\]

Obviously, the pair \(a_1, a_2 \) can be exceptional only if each \(a_i \) is relatively prime to \(m \). If for some \(k, 1 \leq k < m \), the inequality in (2) is false, then we say that \(k \) excludes the pair \(a_1, a_2 \). We shall estimate the integer \(J = J(k) = J(k, m, L) = \) number of pairs \(a_1, a_2 \) with each \(a_i \) relatively prime to \(m \) which are excluded by \(k \) and which satisfy \(1 \leq a_1 < a_2 \leq m/2 \). The requirement that \(a_1 \) and \(a_2 \) be different is convenient later on.

We first estimate \(J(k, m, L) \) in the case where the greatest common divisor \((k, m)\) is 1. Such a \(k \) excludes the pair \(a_1, a_2 \) if and only if \(1 \) excludes the pair \(ka_1, ka_2 \); therefore.

\[
J(k) = J(1) \quad \text{whenever } (k, m) = 1.
\]

We shall prove

\[
J(1) < \frac{\varphi(m)^2}{2L} \left(\log(m^2/L) + \log \log m \right).
\]

In order to do this, we need to define the following sums \(D(x, r, m) \) of the divisor function \(d(n) \) (= the number of positive integer divisors of the positive
integer \(n \) over arithmetic progressions with difference \(m \):

\[
D(x, r, m) = \sum_{n \leq x, n \equiv r \pmod{m}} d(n).
\]

A pair \(a_1, a_2 \) with \(a_i \leq m/2 \) \((i = 1, 2) \) is excluded by \(k = 1 \) if

\[
(a_1 a_2 < m^2/L).
\]

The number of ways of writing any positive integer \(n \leq m^2/L \) as \(a_1 a_2 \) is just \(d(n) \), and the factors are both relatively prime to \(m \) if and only if \(n \) is relatively prime to \(m \). Hence, the number of pairs \(a_1, a_2 \) satisfying (5) and the additional conditions \((a_i, m) = 1 \) \((i = 1, 2) \) and \(1 \leq a_1 < a_2 \leq m/2 \) does not exceed

\[
\frac{1}{2} \sum_{n \leq m^2/L, (n, m) = 1} d(n) = \frac{1}{2} \sum_{r=1}^{m} D(m^2/L, r, m)
\]

(the factor of \(\frac{1}{2} \) comes from the fact that \(d(n) \) counts each factorization \(n = a_1 a_2 \) with distinct \(a_1 \) and \(a_2 \) twice; this is where our assumption that \(a_1 \) and \(a_2 \) are distinct is convenient). Thus, we have proved

\[
J(1, m, L) \leq \frac{1}{2} \sum_{r=1}^{m} D(m^2/L, r, m).
\]

In order to estimate the sum in (6), we need some results of D. H. Lehmer [4] concerning the sums \(H(x, r, m) \) defined by

\[
H(x, r, m) = \sum_{n \leq x, n \equiv r \pmod{m}} 1/n.
\]

Lehmer [4, p. 126] proved the existence of the generalized Euler constants \(\gamma(r, m) \) defined for any integers \(r \) and \(m > 0 \) by

\[
\gamma(r, m) = \lim_{x \to \infty} (H(x, r, m) - m^{-1} \log x).
\]

Clearly, Euler's constant \(\gamma \) is \(\gamma(0, 1) \), and \(\gamma(r, m) \) is a periodic function of \(r \) with period \(m \).

Lemma 1. For any integers \(r, m \) with \(m > 0 \) and \(0 \leq r < m \), we have

\[
0 < H(x, r, m) - m^{-1} \log x - \gamma(r, m) < 1/x
\]

for all \(x \geq m \).

Proof. This follows easily from the proof of the existence of the limit in (7), as given by Lehmer [4, p. 126]. \(\square \)

In order to state our next two lemmas, it is convenient to define the arithmetical functions \(v(n) \) and \(w(n) \) by

\[
v(n) = -\sum_{d \mid n} \mu(d)d^{-1} \log d
\]

\[
w(n) = \sum_{d \mid n} \mu(d)d^{-1} \log d
\]
(here, $\mu(d)$ is the Möbius function and the sum is taken over all positive integer divisors d of n) and
\[
w(n) = n\nu(n)/\varphi(n) = \sum_{p|n}(\log p)/(p-1)
\]
(here, the sum is taken over all prime divisors p of n).

Lemma 2. For every positive integer m,
\[
\sum_{\substack{r=1 \\ (r, m)=1}}^{m} \gamma(r, m) = \varphi(m)m^{-1}(\gamma + w(m)).
\]

Proof. This is equation (16) of Lehmer [4, p. 132]. □

Lemma 3. For every integer $m \geq 8$,
\[
\gamma + w(m) < (m/\varphi(m)) \log \log m.
\]

Proof. Theorem 5 of Davenport [2, p. 294] states
\[
\lim_{m \to \infty} \sup \nu(m)/\log \log m = \frac{1}{4},
\]
which implies the lemma for all large m. Some simple calculations (using $\gamma = .577\ldots$) gives the inequality as stated. □

Our final lemma gives an upper bound on the sum $D(x, r, m)$ when r is relatively prime to m.

Lemma 4. For any integers r, m with r relatively prime to m and $m \geq 8$, we have
\[
D(x, r, m) < \varphi(m)m^{-2}x \log x + 2xm^{-1} \log \log m.
\]

Proof. We adapt the standard proof of Dirichlet’s theorem on summing $d(n)$ for $n \leq x$. The sum $D(x, r, m)$ is the number of lattice points (u, v) with $uv \equiv r \mod m$ lying below the curve $uv = x$ in the first quadrant of the u, v plane. By using the symmetry in the line $u = v$, if we define $T = [x^{1/2}]$, then we have
\[
D(x, r, m) < 2 \sum_{i=1}^{T} F_i(x),
\]
where $F_i(x)$ denotes the number of integers v such that $iv \equiv r \mod m$ and $iv \leq x$; we have strict inequality here since we are double counting the lattice points in the square of side T formed by portions of the u- and v-axes. (For a more elaborate version of this argument, which leads to a O-estimate analogous to the one for the usual Dirichlet divisor problem, see Satz 2 of Kopetzky [3]. The simple inequality of Lemma 4 suffices for our purposes, since the more detailed argument does not affect the main term.) If r is relatively prime to m, then $iv \equiv r \mod m$ is solvable if and only if i is also relatively prime to m, and in that case there is exactly one solution $v \mod m$. It follows that $F_i(x) = 0$ unless i is relatively prime to m and that
\[
F_i(x) \leq x(im)^{-1} \quad \text{for } (i, m) = 1.
\]
Now (9) implies
\[\sum_{i=1}^{T} F_i(x) \leq \frac{x}{m} \sum_{r=1}^{m} H(T, r, m). \]
Finally, Lemmas 1, 2, and 3 give the inequality in Lemma 4. □

It follows from (3), (6) and Lemma 4 that
\[J(k, m, L) < \frac{1}{2} \varphi(m)^2 L^{-1} \log(m^2 L^{-1}) + m \varphi(m) L^{-1} \log \log m \]
holds for all \(k \) with \(k \) relatively prime to \(m \). By the argument in [1, pp. 156–157], the inequality in (10) is still true if \(k \) is not relatively prime to \(m \) (indeed, in that case we can even insert a factor of \(8/9 \) on the right-hand side of (10)).

We can now complete the proof of Theorem 2 (and so of Theorem 1) as in [1, pp. 156–157]: Clearly, (2) holds if and only if the inequality in (2) is true for each \(k \leq m/2 \). The total number of pairs \(a_1, a_2 \) with each \(a_i \) relatively prime to \(m \) and \(1 \leq a_1 < a_2 \leq m/2 \) is
\[\left(\frac{\varphi(m)/2}{2} \right) > \varphi(m)^2 / 8. \]
By (10) and the definition of \(J(k, m, L) \), an exceptional pair \(a_1, a_2 \) certainly exists if
\[\varphi(m)^2 / 8 > \frac{1}{2} m \left(\frac{1}{2} \varphi(m)^2 L^{-1} \log(m^2 L^{-1}) + m \varphi(m) L^{-1} \log \log m \right). \]
Computation (using the well-known fact that \(\lim \sup m(\varphi(m) \log \log m)^{-1} = e^\gamma = 1.781... \)) shows that (11) is true for \(m \geq 8 \) if \(L \geq 3m \log m \). This completes the proof of Theorem 2.

3. Generalizations

It was pointed out in [1, pp. 154–155] that something like Theorem 2 can be proved in the case of \(n \) integers. The main result of [1] was

Theorem 3. Given any integers \(d > 4n \) and \(n > 1 \), there exist integers \(a_1, \ldots, a_n \) relatively prime to \(m \) such that
\[\prod_{i=1}^{n} \|ka_i/m\| > 4^{-n}(\varphi(m)/m)^n(m \log^{n-1} m)^{-1} \quad \text{for each} \ k, \ 1 \leq k < m. \]

In view of the connection of Theorems 1 and 2 above, this can be regarded as an \(n \)-dimensional generalization of a weakened form of Zaremba's conjecture. In [1, p. 155], I proposed the following general conjecture; Zaremba's conjecture is the case \(n = 2 \).

Conjecture. For each \(n \geq 2 \), the lower bound in (12) can be replaced by \(c(n)(m \log^{n-2} m)^{-1} \).

The proof of Theorem 2 above removed the factors \(\varphi(m)/m \) in the case \(n = 2 \) of (12). One might hope to achieve the same result for arbitrary \(n \) by generalizing the proof of Theorem 2; this would require working with the
generalized divisor functions $d_n(t) =$ the number of ways of writing the positive integer t as a product of n positive integer factors.

To conclude, I repeat another speculation from [1, p. 155]: It is possible that the lower bound in (12) could be replaced by $c(n)m^{-1}$ for $n = 3$, or even for all $n \geq 2$. A small amount of computer testing of this for $n = 3$ was reported in [1, p. 155]. Further computer experiments might be worthwhile.

BIBLIOGRAPHY

Department of Mathematics, State University of New York at Buffalo, South Campus, Buffalo, New York 14214

E-mail address: v360eakb@ubvms.cc.buffalo.edu