Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Zaremba's conjecture and sums of the divisor function


Author: T. W. Cusick
Journal: Math. Comp. 61 (1993), 171-176
MSC: Primary 11J13; Secondary 11J25, 11J70
DOI: https://doi.org/10.1090/S0025-5718-1993-1189517-7
MathSciNet review: 1189517
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Zaremba conjectured that given any integer $ m > 1$, there exists an integer $ a < m$ with a relatively prime to m such that the simple continued fraction $ [0,{c_1}, \ldots ,{c_r}]$ for a/m has $ {c_i} \leq B$ for $ i = 1,2 \ldots ,r$, where B is a small absolute constant (say $ B = 5$). Zaremba was only able to prove an estimate of the form $ {c_i} \leq C\log m$ for an absolute constant C. His first proof only applied to the case where m is a prime; later he gave a very much more complicated proof for the case of composite m. Building upon some earlier work which implies Zaremba's estimate in the case of prime m, the present paper gives a much simpler proof of the corresponding estimate for composite m.


References [Enhancements On Off] (What's this?)

  • [1] T. W. Cusick, Products of simultaneous approximations of rational numbers, Arch. Math. (Basel) 53 (1989), 154-158. MR 1004273 (90i:11071)
  • [2] H. Davenport, On a generalization of Euler's function $ \varphi (n)$, J. London Math. Soc. 7 (1932), 290-296.
  • [3] H. G. Kopetzky, Über die Grössenordnung der Teilerfunktion in Restklassen, Monatsh. Math. 82 (1976), 287-295. MR 0429800 (55:2810)
  • [4] D. H. Lehmer, Euler constants for arithmetical progressions, Acta Arith. 27 (1975), 125-142. MR 0369233 (51:5468)
  • [5] S. K. Zaremba, La méthode des "bons treillis" pour le calcul des integrales multiples, Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, New York, 1972, pp. 39-119. MR 0343530 (49:8271)
  • [6] -, Good lattice points modulo composite numbers, Monatsh. Math. 78 (1974), 446-460. MR 0371845 (51:8062)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11J13, 11J25, 11J70

Retrieve articles in all journals with MSC: 11J13, 11J25, 11J70


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1189517-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society