Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Cyclotomy and delta units


Author: Andrew J. Lazarus
Journal: Math. Comp. 61 (1993), 295-305
MSC: Primary 11R27; Secondary 11R16, 11R18, 11R20
DOI: https://doi.org/10.1090/S0025-5718-1993-1189520-7
MathSciNet review: 1189520
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we examine cyclic cubic, quartic, and quintic number fields of prime conductor p containing units that bear a special relationship to the classical Gaussian periods: $ {\eta _j} - {\eta _{j + 1}} + c$ is a unit for periods $ {\eta _j}$ and $ c \in \mathbb{Z}$.


References [Enhancements On Off] (What's this?)

  • [1] Paul Bachmann, Die Lehre von der Kreisteilung, Teubner, Leipzig and Berlin, 1927.
  • [2] Leonard E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424. MR 1507083
  • [3] Marie-Nicole Gras, Table numérique du nombre de classes et des unités des extensions cycliques de degré 4 de $ \mathbb{Q}$, Publ. Math. Fasc. 2, Fac. Sci. Besançon, 1977/1978.
  • [4] Helmut Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Math. Abhandlungen, vol. 3, Walter deGruyter, Berlin, 1975, pp. 285-379; originally published 1950.
  • [5] S. A. Katre and A. R. Rajwade, Complete solution of the cyclotomic problem in $ {F_q}$ for any prime modulus $ l,q = {p^\alpha },p \equiv 1\;\pmod l$, Acta Arith. 45 (1985), 183-199. MR 808019 (87d:11095)
  • [6] -, Unique determination of cyclotomic numbers of order five, Manuscripta Math. 53 (1985), 65-75. MR 804338 (86k:11020)
  • [7] -, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum, Math. Scand. 60 (1987), 52-62. MR 908829 (88j:11047)
  • [8] Andrew J. Lazarus, Gaussian periods and units in certain cyclic fields, Proc. Amer. Math. Soc. 115 (1992), 961-968. MR 1093600 (92j:11118)
  • [9] D. H. Lehmer and Emma Lehmer, The Lehmer project, Math. Comp. 61 (1993), 313-317. MR 1189521 (93k:11100)
  • [10] Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), 535-541. MR 929551 (89h:11067a)
  • [11] René Schoof and Lawrence C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556. MR 929552 (89h:11067b)
  • [12] Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152. MR 0352049 (50:4537)
  • [13] Thomas Storer, Cyclotomy and difference sets, Markham, Chicago, 1967. MR 0217033 (36:128)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R27, 11R16, 11R18, 11R20

Retrieve articles in all journals with MSC: 11R27, 11R16, 11R18, 11R20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1189520-7
Keywords: Units, cyclotomy, Gaussian periods
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society