Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numbers having $ m$ small $ m$th roots mod $ p$


Author: Raphael M. Robinson
Journal: Math. Comp. 61 (1993), 393-413
MSC: Primary 11A07; Secondary 11A15, 11L10, 11R18
DOI: https://doi.org/10.1090/S0025-5718-1993-1189522-0
MathSciNet review: 1189522
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Here are two typical results about the numbers mentioned in the title: If p is a prime such that $ p \equiv 1 \pmod 6$ and $ p > 67$, then there are exactly six numbers $ \bmod\;p$, each of which has six sixth roots less than $ 2\sqrt {3p} $ in absolute value. If p is a prime such that $ p \equiv 1 \pmod 8$, then there is at least one number $ \bmod\;p$ which has eight eighth roots less than $ {p^{3/4}}$ in absolute value.


References [Enhancements On Off] (What's this?)

  • [1] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349-398. MR 544263 (81j:10054)
  • [2] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. 2, Math. Z. 6 (1920), 11-51. MR 1544392
  • [3] Emma Lehmer, On Euler's criterion, J. Austral. Math. Soc. 1 (1959), 64-70. MR 0108475 (21:7191)
  • [4] D. J. Newman, Problem E1954, Amer. Math. Monthly 75 (1968), 545-546. MR 1534894
  • [5] Georg Pick, Geometrisches zur Zahlentheorie, Sitzungsber. Deutschen Natur.-med. Vereines Böhmen "Lotos" in Prag (2) 19 (1899), 311-319.
  • [6] Raphael M. Robinson, Numbers having m small mth roots $ \bmod\;p$, Abstracts Amer. Math. Soc. 5 (1984), 297-298.
  • [7] Albert Leon Whiteman, Cyclotomy and Jacobsthal sums, Amer. J. Math. 74 (1952), 89-99. MR 0045758 (13:626j)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11A07, 11A15, 11L10, 11R18

Retrieve articles in all journals with MSC: 11A07, 11A15, 11L10, 11R18


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1189522-0
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society