How branching properties determine modular equations
Author:
Harvey Cohn
Journal:
Math. Comp. 61 (1993), 155-170
MSC:
Primary 11F11; Secondary 11Y16
DOI:
https://doi.org/10.1090/S0025-5718-1993-1195433-7
MathSciNet review:
1195433
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: If a prime p is decomposed as , the power
can be determined by an algorithm of polynomial efficiency based on use of singular moduli from the modular equation of order 2. The properties of the modular functions required in this algorithm are simple branching and parametrization properties, which in turn define the modular functions and equations (essentially uniquely). The well-known equations of "Klein's Icosahedron" and their Hecke analogues come into play here, and to some extent they can be uniquely characterized in this fashion. The extraneous cases which arise are in some sense interesting analogues of modular equations.
- [1] D. Alexander, C. Cummins, J. McKay, and C. Simons, Completely replicable functions (to appear).
- [2] H. Cohn, Iterated ring class fields and the icosahedron, Math. Ann. 255 (1981), 107-122. MR 611277 (83h:12018)
- [3] -, Introduction to the construction of class fields, Cambridge Univ. Press, London and New York, 1985. MR 812270 (87i:11165)
- [4] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339. MR 554399 (81j:20028)
- [5] R. Fricke, Lehrbuch der Algebra III (Algebraische Zahlen), Vieweg, Braunschweig, 1928.
- [6] F. Klein, Vorlesungen über das Ikosaeder, Teubner, Leipzig, 1884.
- [7]
D. H. Lehmer, Properties of coefficients of the modular invariant
, Amer. J. Math. 64 (1942), 488-502. MR 0006210 (3:272c)
- [8] K. Mahler, On a class of non-linear functional equations connected with modular equations, J. Austral. Math. Soc. Ser. A 22 (1976), 65-118. MR 0441867 (56:258)
- [9]
C. Pohl, G. Rosenberger, and A. Schoofs, Arithmetische Eigenschaften von Eisenstein-Reihen zu den Hecke-Gruppen
und
, Abh. Math. Sem. Univ. Hamburg 54 (1984), 49-68. MR 780237 (86g:11026)
- [10] H. Weber, Elliptische Funktionen und algebraische Zahlen, Vieweg, Braunschweig, 1891.
Retrieve articles in Mathematics of Computation with MSC: 11F11, 11Y16
Retrieve articles in all journals with MSC: 11F11, 11Y16
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1993-1195433-7
Keywords:
Klein and Hecke modular functions,
modular equations
Article copyright:
© Copyright 1993
American Mathematical Society