Ambiguous classes in quadratic fields
Author:
R. A. Mollin
Journal:
Math. Comp. 61 (1993), 355360
MSC:
Primary 11R29; Secondary 11R09, 11R11
MathSciNet review:
1195434
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We provide sufficient conditions for the class group of a quadratic field (with positive or negative discriminant) to be generated by ambiguous ideals. This investigation was motivated by a recent result of F. HalterKoch, which we show is false.
 [1]
F.
HalterKoch, Primeproducing quadratic polynomials and class
numbers of quadratic orders, Computational number theory (Debrecen,
1989) de Gruyter, Berlin, 1991, pp. 73–82. MR 1151856
(93c:11101)
 [2]
S.
Louboutin, R.
A. Mollin, and H.
C. Williams, Class numbers of real quadratic fields, continued
fractions, reduced ideals, primeproducing quadratic polynomials and
quadratic residue covers, Canad. J. Math. 44 (1992),
no. 4, 824–842. MR 1178571
(93h:11117), http://dx.doi.org/10.4153/CJM19920490
 [3]
R.
A. Mollin and H.
C. Williams, Prime producing quadratic polynomials and real
quadratic fields of class number one, Théorie des nombres
(Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 654–663. MR 1024594
(90m:11153)
 [4]
R.
A. Mollin and H.
C. Williams, On prime valued polynomials and class numbers of real
quadratic fields, Nagoya Math. J. 112 (1988),
143–151. MR
974269 (90c:11080)
 [5]
R.
A. Mollin and H.
C. Williams, Solution of the class number one problem for real
quadratic fields of extended RichaudDegert type (with one possible
exception), Number theory (Banff, AB, 1988) de Gruyter, Berlin,
1990, pp. 417–425. MR 1106676
(92f:11144)
 [1]
 F. HalterKoch, Primeproducing quadratic polynomials and class numbers of quadratic orders, Computational Number Theory (A. Pethö, M. Pohst, H. C. Williams, and H. Zimmer, eds.), de Gruyter, Berlin, 1991, pp. 7382. MR 1151856 (93c:11101)
 [2]
 S. Louboutin, R. A. Mollin, and H. C. Williams, Class numbers of real quadratic fields, continued fractions, reduced ideals, primeproducing quadratic polynomials and quadratic residue covers, Canad. J. Math. 44 (1992), 119. MR 1178571 (93h:11117)
 [3]
 R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, Number Theory (J. M. De Koninck and C. Levesque, eds.), de Gruyter, Berlin, 1989, pp 654663. MR 1024594 (90m:11153)
 [4]
 , On prime valued polynomials and class numbers of real quadratic fields, Nagoya Math. J. 112 (1988), 143151. MR 974269 (90c:11080)
 [5]
 , Solution of the class number one problem for real quadratic fields of extended RichaudDegert type (with one possible exception), Number Theory (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 417425. MR 1106676 (92f:11144)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11R29,
11R09,
11R11
Retrieve articles in all journals
with MSC:
11R29,
11R09,
11R11
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718199311954349
PII:
S 00255718(1993)11954349
Keywords:
Ambiguous ideal,
quadratic field,
class number,
exponent
Article copyright:
© Copyright 1993
American Mathematical Society
