Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical computations concerning the ERH


Author: Robert Rumely
Journal: Math. Comp. 61 (1993), 415-440, S17
MSC: Primary 11M26; Secondary 11M06, 11Y35
DOI: https://doi.org/10.1090/S0025-5718-1993-1195435-0
MathSciNet review: 1195435
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes a computation which established the ERH to height 10000 for all primitive Dirichlet L-series with conductor $ Q \leq 13$, and to height 2500 for all $ Q \leq 72$, all composite $ Q \leq 112$, and other moduli. The computations were based on Euler-Maclaurin summation. Care was taken to obtain mathematically rigorous results: the zeros were first located within $ {10^{ - 12}}$, then rigorously separated using an interval arithmetic package. A generalized Turing Criterion was used to show there were no zeros off the critical line. Statistics about the spacings between zeros were compiled to test the Pair Correlation Conjecture and GUE hypothesis.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), 1361-1372. MR 537983 (80g:10033)
  • [2] H. Davenport, Multiplicative number theory, 2nd ed. (revised by H. L. Montgomery), Graduate Texts in Math., vol. 74, Springer-Verlag, New York, Berlin, Heidelberg, 1980. MR 606931 (82m:10001)
  • [3] D. Davies and C. B. Haselgrove, The evaluation of Dirichlet L-functions, Proc. Roy. Soc. London Ser. A 264 (1961), 122-132. MR 0136052 (24:B2091)
  • [4] H. M. Edwards, Riemann's zeta function, Academic Press, New York and London, 1974. MR 0466039 (57:5922)
  • [5] D. A. Hejhal, Epstein zeta functions and supercomputers, Internat. Congr. Math. (Berkeley, 1986), vol. II, Amer. Math. Soc., Providence, RI, 1987, pp. 1362-1384. MR 934341 (89g:11128)
  • [6] Intel Corporation, iAPX 86/88, 186/188 user's manual, Santa Clara, California, 1986.
  • [7] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Stud., no. 74, Princeton Univ. Press, Princeton, NJ, 1972. MR 0360526 (50:12974)
  • [8] R. S. Lehman, On the distribution of the zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303-320. MR 0258768 (41:3414)
  • [9] D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291-298. MR 0086082 (19:121a)
  • [10] -, Extended computation of the Riemann zeta-function, Mathematica 3 (1956), 102-108. MR 0086083 (19:121b)
  • [11] J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. IV, Math. Comp. 46 (1986), 667-681. MR 829637 (87e:11102)
  • [12] K. S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), 265-285. MR 726004 (85e:11065)
  • [13] -, Explicit estimates for $ \theta (x;3,l)$ and $ \psi (x;3,l)$, Math. Comp. 42 (1984), 287-296. MR 726005 (85g:11085)
  • [14] M. L. Mehta and J. des Cloizeaux, The probabilities for several consecutive eigenvalues of a random matrix, Indian J. Pure Appl. Math. 3 (1972), 329-351. MR 0348823 (50:1318)
  • [15] H. L. Montgomery, The pair correlation function of zeros of the zeta function, Analytic Number Theory (H. G. Diamond, ed.), Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc. Providence, RI, 1973, pp. 181-193. MR 0337821 (49:2590)
  • [16] A. M. Odlyzko, The $ {10^{20}}$-th zero of the Riemann zeta function and 175 million of its neighbors (to appear).
  • [17] A. E. Ozluk, On the pair correlation of zeros of Dirichlet L-functions, Proc. First Conf. Canadian Number Theory Assoc. (Banff, 1988), R. A. Mollin, ed., W. de Gruyter, Berlin, 1990. MR 1106680 (92j:11091)
  • [18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes, The art of scientific computing, Cambridge Univ. Press, New York, 1986. MR 833288 (87m:65001a)
  • [19] H. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72 (1959), 192-204. MR 0117200 (22:7982)
  • [20] O. Ramaré, Contribution au problème de Goldbach: tout entier supérieur a 1 est somme d'au plus 13 nombres premiers, Thesis, Université de Bordeaux I, 1991.
  • [21] -, Primes in arithmetic progressions, submitted to Math. Comp.
  • [22] -, private communication.
  • [23] C. L. Siegel, Contribution to the theory of Dirichlet L-series and the Epstein zeta-functions, Ann. of Math. 44 (1943), 143-172 (= Gesammelte Abhandlungen, vol. II, no. 42, pp. 360-389). MR 0007760 (4:189c)
  • [24] R. Spira, Calculation of Dirichlet L-functions, Math. Comp. 23 (1969), 489-497. MR 0247742 (40:1004a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11M26, 11M06, 11Y35

Retrieve articles in all journals with MSC: 11M26, 11M06, 11Y35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1195435-0
Keywords: Dirichlet L-series, Extended Riemann Hypothesis, GUE hypothesis, Pair correlation conjecture
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society