Irregular primes and cyclotomic invariants to four million

Authors:
J. Buhler, R. Crandall, R. Ernvall and T. Metsänkylä

Journal:
Math. Comp. **61** (1993), 151-153

MSC:
Primary 11B68; Secondary 11D41, 11R29, 11Y35, 11Y40

MathSciNet review:
1197511

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recent computations of irregular primes, and associated cyclotomic invariants, were extended to all primes below four million using an enhanced multisectioning/convolution method. Fermat's "Last Theorem" and Vandiver's conjecture were found to be true for those primes, and the cyclotomic invariants behaved as expected. There is exactly one prime less than four million whose index of irregularity is equal to seven.

**[1]**J. P. Buhler, R. E. Crandall, and R. W. Sompolski,*Irregular primes to one million*, Math. Comp.**59**(1992), no. 200, 717–722. MR**1134717**, 10.1090/S0025-5718-1992-1134717-4**[2]**D. Bernstein,*Multidigit multiplication, the FFT, and Nussbaumer's algorithm*, manuscript.**[3]**Richard Crandall and Barry Fagin,*Discrete weighted transforms and large-integer arithmetic*, Math. Comp.**62**(1994), no. 205, 305–324. MR**1185244**, 10.1090/S0025-5718-1994-1185244-1**[4]**R. Ernvall and T. Metsänkylä,*Cyclotomic invariants for primes to one million*, Math. Comp.**59**(1992), no. 199, 249–250. MR**1134727**, 10.1090/S0025-5718-1992-1134727-7**[5]**Wells Johnson,*Irregular primes and cyclotomic invariants*, Math. Comp.**29**(1975), 113–120. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR**0376606**, 10.1090/S0025-5718-1975-0376606-9**[6]**Donald E. Knuth,*The art of computer programming. Vol. 2*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**633878****[7]**D. H. Lehmer, Emma Lehmer, and H. S. Vandiver,*An application of high-speed computing to Fermat’s last theorem*, Proc. Nat. Acad. Sci. U. S. A.**40**(1954), 25–33. MR**0061128****[8]**Jonathan W. Tanner and Samuel S. Wagstaff Jr.,*New congruences for the Bernoulli numbers*, Math. Comp.**48**(1987), no. 177, 341–350. MR**866120**, 10.1090/S0025-5718-1987-0866120-4

Retrieve articles in *Mathematics of Computation*
with MSC:
11B68,
11D41,
11R29,
11Y35,
11Y40

Retrieve articles in all journals with MSC: 11B68, 11D41, 11R29, 11Y35, 11Y40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1993-1197511-5

Article copyright:
© Copyright 1993
American Mathematical Society