Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergence of second-order schemes for isentropic gas dynamics


Authors: Gui Qiang Chen and Jian-Guo Liu
Journal: Math. Comp. 61 (1993), 607-627
MSC: Primary 65M12; Secondary 65M06, 76L05, 76M20, 76N15
DOI: https://doi.org/10.1090/S0025-5718-1993-1185239-7
MathSciNet review: 1185239
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Convergence of a second-order shock-capturing scheme for the system of isentropic gas dynamics with $ {L^\infty }$ initial data is established by analyzing the entropy dissipation measures. This scheme is modified from the classical MUSCL scheme to treat the vacuum problem in gas fluids and to capture local entropy near shock waves. Convergence of this scheme for the piston problem is also discussed.


References [Enhancements On Off] (What's this?)

  • [1] G.-Q. Chen, The compensated compactness method and the system of isentropic gas dynamics, MSRI preprint 00527-91, 1990.
  • [2] -, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics III, Acta Math. Sci. 6 (1986), 75-120; 8 (1988), 243-276 (in Chinese). MR 924671 (89f:76007)
  • [3] -, Hyperbolic systems of conservation laws with a symmetry, Comm. Partial Differential Equations 16 (1991), 1461-1487. MR 1132792 (92g:35130)
  • [4] G.-Q. Chen, Q. Du, and E. Tadmor, Spectral viscosity approximations to multidimensional scalar conservation laws, Math. Comp. 61 (1993), 629-643. MR 1185240 (94b:35168)
  • [5] F. Coquel and P. Le Floch, Convergence of finite difference schemes for conservation laws in several space dimensions: The corrected antidiffusive flux approach, Math. Comp. 57 (1991), 169-210. MR 1079010 (91m:65229)
  • [6] X. Ding, G.-Q. Chen, and P. Luo, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics I, II, Acta Math. Sci. 5 (1985), 483-500, 501-540; 7 (1987), 460-480, 8 (1988), 61-94 (in Chinese). MR 958382 (90b:76002)
  • [7] R. DiPerna, Convergence of viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), 1-30. MR 719807 (85i:35118)
  • [8] S. K. Godunov, A finite difference scheme for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 47 (1959), 271-290.
  • [9] A. Harten and S. Osher, Uniformly high order accurate non-oscillatory schemes, I, SIAM J. Numer. Anal. 24 (1987), 279-309. MR 881365 (90a:65198)
  • [10] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order accurate non-oscillatory schemes, III, J. Comput. Phys. 71 (1987), 231-303. MR 897244 (90a:65199)
  • [11] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, Philadelphia, PA, 1973. MR 0350216 (50:2709)
  • [12] P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217-237. MR 0120774 (22:11523)
  • [13] P. L. Lions and P. Souganidis, Convergence of MUSCL type methods for scalar conservation laws, C. R. Acad. Sci. Paris, Série I 311 (1990), 259-264. MR 1071622 (91i:65168)
  • [14] A. Majda and S. Osher, Numerical viscosity and the entropy condition, Comm. Pure Appl. Math. 32 (1979), 797-838. MR 539160 (80j:65031)
  • [15] F. Murat, L'injection du cone positif de $ {H^{ - 1}}$ dans $ {W^{ - 1,q}}$ est compacte pour tout $ q < 2$, J. Math. Pure Appl. 60 (1981), 309-322. MR 633007 (83b:46045)
  • [16] T. Nishida and J. Smoller, Mixed problems for nonlinear conservation laws, J. Differential Equations 23 (1977), 244-269. MR 0427852 (55:882)
  • [17] S. Osher, On convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22 (1985), 947-961. MR 799122 (87b:65147)
  • [18] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981), 357-380. MR 640362 (82k:65055)
  • [19] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys. 83 (1989), 32-51. MR 1010162 (90i:65167)
  • [20] A. Szepessy, Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions, Math. Comp. 53 (1989), 527-545. MR 979941 (90h:65156)
  • [21] E. Tadmor, Semi-discrete approximations to nonlinear systems of conservation laws: consistency and $ {L^\infty }$-stability imply convergence, ICASE report 88-41, 1988.
  • [22] S. Takeno, Initial boundary problems for isentropic gas dynamics, Proc. Roy. Soc. Edinburgh 120A (1992), 1-23. MR 1149981 (92m:35266)
  • [23] L. Tartar, Compensated compactness and applications to partial differential equations, Research Notes in Math., Nonlinear Analysis and Mechanics (R. J. Knops, ed.), vol. 4, Pitman Press, New York, 1979. MR 584398 (81m:35014)
  • [24] B. Van Leer, Towards the ultimate conservative difference schemes, V, A second order sequel to Godunov's method, J. Comput. Phys. 43 (1981), 357-372. MR 1703646 (2000h:65120)
  • [25] J. P. Vila, High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws, Math. Comp. 50 (1988), 53-73. MR 917818 (89b:65217)
  • [26] J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21 (1950), 232-237. MR 0037613 (12:289b)
  • [27] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shock, J. Comput. Phys. 54 (1984), 115-173. MR 748569 (85e:76004)
  • [28] H. Yang, Nonlinear wave analysis and convergence of MUSCL schemes, IMA preprint 697, 1990.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M12, 65M06, 76L05, 76M20, 76N15

Retrieve articles in all journals with MSC: 65M12, 65M06, 76L05, 76M20, 76N15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1185239-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society