Generalized repunit primes

Author:
Harvey Dubner

Journal:
Math. Comp. **61** (1993), 927-930

MSC:
Primary 11A51

MathSciNet review:
1185243

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized repunits have the form . A table of generalized repunit primes and probable primes is presented for *b* up to 99 and large values of *n*.

**[1]**A. O. L. Atkin and F. Morain,*Elliptic curves and primality proving*, Raport de Recherche 1256, INRIA, Juin, 1990.**[2]**Robert Baillie and Samuel S. Wagstaff Jr.,*Lucas pseudoprimes*, Math. Comp.**35**(1980), no. 152, 1391–1417. MR**583518**, 10.1090/S0025-5718-1980-0583518-6**[3]**John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr.,*Factorizations of 𝑏ⁿ±1*, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. 𝑏=2,3,5,6,7,10,11,12 up to high powers. MR**996414****[4]**C. Caldwell,*The near repdigit primes*,*and UBASIC*, J. Recreational Math.**22**(2) (1990), 101-109.**[5]**H. Dubner and R. Dubner,*The development of a low-cost computer for number theory applications*, J. Recreational Math.**18**(1985-86), 81-86.**[6]**François Morain,*Distributed primality proving and the primality of (2³⁵³⁹+1)/3*, Advances in cryptology—EUROCRYPT ’90 (Aarhus, 1990) Lecture Notes in Comput. Sci., vol. 473, Springer, Berlin, 1991, pp. 110–123. MR**1102475**, 10.1007/3-540-46877-3_10**[7]**W. Neumann,*A public domain BASIC for mathematics*, Notices Amer. Math. Soc.**36**(1989), 557-559.**[8]**H. C. Williams and E. Seah,*Some primes of the form (𝑎ⁿ-1)/(𝑎-1)*, Math. Comp.**33**(1979), no. 148, 1337–1342. MR**537980**, 10.1090/S0025-5718-1979-0537980-7

Retrieve articles in *Mathematics of Computation*
with MSC:
11A51

Retrieve articles in all journals with MSC: 11A51

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1993-1185243-9

Article copyright:
© Copyright 1993
American Mathematical Society