Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Generalized repunit primes


Author: Harvey Dubner
Journal: Math. Comp. 61 (1993), 927-930
MSC: Primary 11A51
DOI: https://doi.org/10.1090/S0025-5718-1993-1185243-9
MathSciNet review: 1185243
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized repunits have the form $ ({b^n} - 1)/(b - 1)$. A table of generalized repunit primes and probable primes is presented for b up to 99 and large values of n.


References [Enhancements On Off] (What's this?)

  • [1] A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Raport de Recherche 1256, INRIA, Juin, 1990.
  • [2] R. Baillie and S. S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391-1417. MR 583518 (81j:10005)
  • [3] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorization of $ {b^n} \pm 1,\;b = 2,3,5,6,7,10,11,12$ up to high powers, Amer. Math. Soc., Providence, RI, 1988. MR 996414 (90d:11009)
  • [4] C. Caldwell, The near repdigit primes $ {A_n}B,A{B_n}$, and UBASIC, J. Recreational Math. 22 (2) (1990), 101-109.
  • [5] H. Dubner and R. Dubner, The development of a low-cost computer for number theory applications, J. Recreational Math. 18 (1985-86), 81-86.
  • [6] F. Morain, Distributed primality proving and the primality of $ ({2^{3539}} + 1)/3$, Advances in Cryptology-EURODRYPT '90 (I. B. Damgard, ed.), pp. 110-123. MR 1102475
  • [7] W. Neumann, A public domain BASIC for mathematics, Notices Amer. Math. Soc. 36 (1989), 557-559.
  • [8] H. C. Williams and E. Seah, Some primes of the form $ ({a^n} - 1)/(a - 1)$, Math. Comp. 33 (1979), 1337-1342. MR 537980 (80g:10014)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11A51

Retrieve articles in all journals with MSC: 11A51


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1185243-9
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society