Generalized repunit primes

Author:
Harvey Dubner

Journal:
Math. Comp. **61** (1993), 927-930

MSC:
Primary 11A51

DOI:
https://doi.org/10.1090/S0025-5718-1993-1185243-9

MathSciNet review:
1185243

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized repunits have the form . A table of generalized repunit primes and probable primes is presented for *b* up to 99 and large values of *n*.

**[1]**A. O. L. Atkin and F. Morain,*Elliptic curves and primality proving*, Raport de Recherche 1256, INRIA, Juin, 1990.**[2]**R. Baillie and S. S. Wagstaff, Jr.,*Lucas pseudoprimes*, Math. Comp.**35**(1980), 1391-1417. MR**583518 (81j:10005)****[3]**J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr.,*Factorization of**up to high powers*, Amer. Math. Soc., Providence, RI, 1988. MR**996414 (90d:11009)****[4]**C. Caldwell,*The near repdigit primes*,*and UBASIC*, J. Recreational Math.**22**(2) (1990), 101-109.**[5]**H. Dubner and R. Dubner,*The development of a low-cost computer for number theory applications*, J. Recreational Math.**18**(1985-86), 81-86.**[6]**F. Morain,*Distributed primality proving and the primality of*, Advances in Cryptology-EURODRYPT '90 (I. B. Damgard, ed.), pp. 110-123. MR**1102475****[7]**W. Neumann,*A public domain BASIC for mathematics*, Notices Amer. Math. Soc.**36**(1989), 557-559.**[8]**H. C. Williams and E. Seah,*Some primes of the form*, Math. Comp.**33**(1979), 1337-1342. MR**537980 (80g:10014)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A51

Retrieve articles in all journals with MSC: 11A51

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1993-1185243-9

Article copyright:
© Copyright 1993
American Mathematical Society