Lattice rules by component scaling

Authors:
J. N. Lyness and T. Sørevik

Journal:
Math. Comp. **61** (1993), 799-820

MSC:
Primary 65D32

MathSciNet review:
1185247

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a theory of rectangular scaling of integer lattices. This may be used to construct families of lattices. We determine the relation between the Zaremba index of various members of the same family. It appears that if one member of a family has a high index, some of the other family members of higher order may have extraordinarily high indices.

We have applied a technique based on this theory to lists of good lattices available to us. This has enabled us to construct lists of excellent previously unknown lattices of high order in three and four dimensions and of moderate order in five dimensions.

**[1]**Marc Bourdeau and Alain Pitre,*Tables of good lattices in four and five dimensions*, Numer. Math.**47**(1985), no. 1, 39–43. MR**797876**, 10.1007/BF01389874**[2]**Gershon Kedem and S. K. Zaremba,*A table of good lattice points in three dimensions*, Numer. Math.**23**(1974), 175–180. MR**0373239****[3]**J. N. Lyness and T. Sørevik,*A search program for finding optimal integration lattices*, Computing**47**(1991), no. 2, 103–120 (English, with German summary). MR**1139431**, 10.1007/BF02253429**[4]**J. N. Lyness and T. Sørevik,*An algorithm for finding optimal integration lattices of composite order*, BIT**32**(1992), no. 4, 665–675. MR**1191020**, 10.1007/BF01994849**[5]**Dominique Maisonneuve,*Recherche et utilisation des “bons treillis”. Programmation et résultats numériques*, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 121–201 (French, with English summary). MR**0343529****[6]**Harald Niederreiter,*Quasi-Monte Carlo methods for multidimensional numerical integration*, Numerical integration, III (Oberwolfach, 1987) Internat. Schriftenreihe Numer. Math., vol. 85, Birkhäuser, Basel, 1988, pp. 157–171. MR**1021532**, 10.1007/978-3-0348-6398-8_15**[7]**Harald Niederreiter,*The existence of efficient lattice rules for multidimensional numerical integration*, Math. Comp.**58**(1992), no. 197, 305–314, S7–S16. MR**1106976**, 10.1090/S0025-5718-1992-1106976-5**[8]**Ian H. Sloan and James N. Lyness,*The representation of lattice quadrature rules as multiple sums*, Math. Comp.**52**(1989), no. 185, 81–94. MR**947468**, 10.1090/S0025-5718-1989-0947468-3**[9]**S. C. Zaremba,*Good lattice points, discrepancy, and numerical integration*, Ann. Mat. Pura Appl. (4)**73**(1966), 293–317. MR**0218018****[10]**S. K. Zaremba,*Good lattice points modulo composite numbers*, Monatsh. Math.**78**(1974), 446–460. MR**0371845**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D32

Retrieve articles in all journals with MSC: 65D32

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1993-1185247-6

Keywords:
Lattice rules,
number-theoretic rules,
Zaremba index,
figure of merit,
scaled lattice

Article copyright:
© Copyright 1993
American Mathematical Society