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ON STRONG PSEUDOPRIMES TO SEVERAL BASES

GERHARD JAESCHKE

Abstract. With y/k denoting the smallest strong pseudoprime to all of the first

k primes taken as bases we determine the exact values for y/¡, %, i//y, y/% and

give upper bounds for y/$ , y^o, V\ \ ■ We discuss the methods and underlying

facts for obtaining these results.

1. PrIMALITY TESTS BY MEANS OF STRONG PSEUDOPRIMES

Computer algebra systems, as for instance AXIOM [2], use strong pseudo-

primes for testing primality of integers. The advantage of such tests is that they
are very efficient. The disadvantage is that they are only probabilistic tests when

the integers are not restricted to certain intervals. To make such tests determin-

istic for integers in prescribed intervals, one has to know the exact number of
necessary so-called "strong pseudoprimality tests". For this purpose we intro-

duce the numbers y/x, y/2, ... for which we compute lower and upper bounds.

These numbers are defined and discussed in this section; in §2 we derive some

facts which are the basis for finding bounds for the numbers y/k. In §3 we
discuss the methods which led to our results.

In view of Fermat's "Little Theorem" we know that n is certainly not a prime
when we have b"~l ^ 1 mod n for an integer b with 1 < b < n - 1. That is,

if n is prime, then

(1) bn~x = 1    mod n.

An odd composite number n for which (1) holds is called a "pseudoprime to

base b" (we write psp(ô, «)). Usually, for a composite n there exist small bases
b such that (1) is violated, but there are numbers n which are pseudoprimes

to every base b coprime with n. These are called "Carmichael numbers".
Therefore, a stronger criterion than (1) is needed for testing primality which

leads to the concept of "strong pseudoprime to base b". When n = 1 + 2h d

with d odd, h > 0, and when « is a composite number, then n is called a
"strong pseudoprime to base £" if either

(2a) bd = 1    mod n

or

(2b) btd = -l    mod«
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for an integer k satisfying 0 < k < h . We write spsp(¿>, n) if and only if n is

a strong pseudoprime to base b . From [3] we know that there are 4842 strong

pseudoprimes to base 2 which are less than 25 • 109, but there does not exist

any integer below this limit that is simultaneously a strong pseudoprime to all

the bases 2,3,5,7,11. The last fact can be used for a fast primality test for

numbers n < 25 • 109 , as is easily seen.

Now we turn to the definition of the integers y/k mentioned above. Let
qx, ... ,qk be the first k primes. Then y/k is the smallest positive integer
n such that « is a strong pseudoprime to all the bases qx, ... , qk . Thus, if
n < yik, then only k strong primality tests are needed in order to find out
whether n is prime or not. This shows the importance of knowing strong
pseudoprimes to several bases.

From the paper [3] we obtain the following facts:

yix = 2047,

y/2= 1373653,

y/3 = 25326001,

^4 = 3215031751,

^5>25-109.

In this note we state some additional results, namely:

y/5 = 2152302898747 = 6763 • 10627 • 29947,

^6 = 3474749660383= 1303 • 16927 • 157543,

y/n = 341550071728321 = 10670053 • 32010157,

y/s = 341550071728321 = 10670053 • 32010157,

y/9 < 41234316135705689041 = 4540612081 • 9081224161,

y/x0 < 1553360566073143205541002401
= 22754930352733 • 68264791058197,

y/xx < 56897193526942024370326972321
= 137716125329053•413148375987157.

In order to obtain a lower bound lk for y/k, one has to show the nonexis-
tence of strong pseudoprimes to the bases qx, ... , qk less than lk . The upper
bounds for the y/k are obtained by constructing strong pseudoprimes to the

bases qx, ... , qk . How this is performed will be discussed in §§3 and 4.

2. Foundations of the algorithm

In this section we formulate some statements which form the basis for the

algorithm in §3, where bounds for the numbers y/k have to be computed. The

first statement requires the concept "signature of the prime p to the bases

ax,... , aw". Let la{p) denote the smallest positive exponent x such that
ax = 1 mod p , where gcd(a, p) = 1. Such an integer always exists by Fermat's

theorem. Obviously, one has p = 1 mod la{p) ■ Let us further denote by

A(g) the exponent of the greatest power of 2 that divides the integer g. Then

Mhip)) is called the "signature of p to base à". More generally, if

v = iax, ... , aw),    gcd(a,,/?) = 1   for i = 1,..., w,
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we define

*; = (A(/a,(p)),...,A(Up)))

and call this uMuple the "signature of p to the bases ax, ... , aw". Finally, we

write
psp((fli, ... ,aw), n)   or    spsp((a., ... , a«,), «),

respectively, if and only if « is a pseudoprime or strong pseudoprime, respec-

tively, to all the bases ax, ... , aw . By means of these notions we formulate
the first fact concerning strong pseudoprimes.

Proposition 1. Let n = px---pt with different primes px, ... , pt. Further let

v = iax, ... , aw) with different integers ax, ... , aw greater than 1 such that

gcd(a,, Pj) = 1 for all i = I, ... , w; j = I, ... , t. Under these assumptions

spsp(i/, n) holds if and only if psp(i^, n) is valid and all p¡, j = I, ... , t,
have the same signature to all of the bases ax, ... , aw , i.e., aPx = ■ ■ ■ = oPt.

Proof. This statement is an immediate consequence of the following equiva-
lences:

a2 d = -1 mod n <& A(/a(p,)) = k + 1   for all p¡\n and psp(a, n)

and
ad = 1 mod n «• A(/fl(p,-)) = 0   for all p¡\n and psp(a, n),

where n = 1 + 2hd, d odd, 0 < k < h , and gcd(a, n) = 1.   D

Proposition 1 serves on the one hand for constructing strong pseudoprimes

to several bases by multiplying primes which have identical signatures, and on
the other hand for proving the nonexistence of such strong pseudoprimes below
some given limit.

Example. For v = (11, 13, 17) we have

^531= *&51=*3571 =(0,0,0),

and since psp(i/, n) holds for n = 1531-2551 -3571, we also have spsp(i^, n).

Proposition 2. Let ax, ... ,aw be different primes. Then for primes p=3 mod 4

with p not dividing ax, ... ,aw the signature (Tjai'-'a") depends only on the

residue class of p mod 4ax ■ ■ ■ aw .

Proof. For p = 3 mod 4 we evidently have A(/a(/?)) e {0, 1} , and if o^' •••••"'»)

= ibx, ... , bw), then

Thus, ,T^I|'"'a"') depends only on the quadratic residue character of the a¡

mod p. By the law of quadratic reciprocity it then follows

A(/a,(p)) = A(/aj((7))   for p = q mod 4a,,

hence the assertion of the proposition.   D

Example. Let i/ = (2, 3, 5, 7, 11). We want to find all primes p = 3 mod 4
which have the signature ap = (0, 1,0,0, 1). So we have to solve the system

©■©-G)- - 6)=(t)=--
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This is equivalent to solving the system of congruences

p = 7    mod 8,

p = 7    mod 12,

p= 11, 19    mod 20,

p = 3,19,27    mod 28,

p = 3, 15, 23, 27, 31    mod 44,

which yields 30 classes mod 9240:

p = 3l, 199,559, 1039,..., 8959 mod 9240.

By means of Proposition 2 exactly the primes in each of these 30 classes are the

desired primes.

For primes p = 1 mod 4 we have no corresponding statement. But here the

following proposition can be useful.

Proposition 3. For primes p, q it is true that

Aip-l)=Aiq-l)and4a) = o^    imply    (j¡) = (f) ■

Proof. This follows from

4a)=Aip-l)^(^j=-l.    O

Example. By Proposition 3 it is easy to determine all primes p = 5 mod 8

which have the signature ap ' '5) = (2,2,2). These are exactly the primes

p = 53, 77 mod 120. But each of the signatures avp=i2,2,0) and (2,2, 1)
for v = (2,3,5) does not depend only on residue classes mod 120, as we

shall se below. We find by Proposition 3 that

of'3'5) = (2,2, A)   with A e{0, l}forp = 29, 101 mod 120.

For these p we have (using the 4th power residue character symbol)

fl\     =5(P-D/4       modp.

hence, in view of (^) = 1,

(-}   =1   implies   of'3'5) = (2,2,0),

(-\   =-l   implies   <T¿2'3'5) = (2,2, 1).

Both p-types occur in each of the residue classes 29, 101 mod 120:

<#3'5) = ^0i3'5) = (2,2,l), ^3,5) = ,(2,3,5) = (2>2}0).

For an efficient determination of large strong pseudoprimes to several bases we

use later on
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Proposition 4. If p and q = 2p - 1 are primes, and if b is an odd integer with

%cd\b, p) = gcd(è, q) = I, then we have

psp(¿>, pq) if and only if (tJ = 1.

Proof. Under the above assumptions we have

bpq-x = 1 modpq «• bp~x = 1 mod<?.

But with p — 1 = iY~ and q = 1 mod 4 we obtain the assertion by the law of

quadratic reciprocity.   D

Remark. For b = 2 we simply have

psp(2, pi2p - 1)) <ï p = 1 mod 4

under the assumption that p, 2p - 1 are primes.

3. Algorithm

In this section we start by describing the general procedure for determining

all strong pseudoprimes n to given bases, where n is bounded by a prescribed
limit g and has a given number t of prime factors. We continue by applying
this procedure to special cases, which yield the results presented in §1.

In all the following discussions we can restrict ourselves to squarefree integers,

in view of Proposition 4 in [3] and the fact the congruences 2p~l = 1 mod p2

and 3P~X = 1 mod p2 do not hold simultaneously for any prime p below
3-109 [3].

Let q¡ denote the /th prime, and let v = iqx,... ,qw). If a large integer

g is given and t is a small positive integer > 2, then we want to solve the
following problem:

Find all strong pseudoprimes < g to the bases qx, ... , qw that have t
different prime factors.

Case 1. We start by assuming t > 3.

Phase 1. We determine all (i- l)-tuples ipx, ... , pt-X) with primes px,... ,
pt-X such that

(A) qw<px<--- <pt-x,

<B) <£=- = <£_,,

(C) px---pt-2p2_x <g.
We call the (i - l)-tuples satisfying (A), (B), (C) "feasible (i - l)-tuples".

Phase 2. For each feasible (/- l)-tuple ipx, ... , pt-\) we proceed as follows.

We choose one of the primes qx, ... , qw as b .

Step 1. We compute r\ = lcm(/ft(pi), ... , hiPt-\)) ■
Step 2. If gcd(//, px ■ --Pt-i) > 1, then the (i - l)-tuple ipx,... , pt-X) is

ignored. Otherwise, compute the multiplicative inverse c of px • ■ -pt-\ mod n,

i.e., c = (pi---p/_1)-1 mod n.

Step 3. For each prime y < g/ipx---Pt-\) with y = c mod n we test
whether spsp(^, px • ■ -pt-Xy) holds or not.

Case 2. We now assume that t = 2. For each prime p < y/g we first compute

Xp = lcm(2, /fllip),... ,lqwip)).

Then all products P = p(l + klp) are computed for k = 1 + [p - l)/Àp, ...,
l(g - P)/P^p] > where  1 -l- klp must be prime.  For each product P we test

whether spsp(i/, P) holds or not.
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Improvements of the algorithm. A central problem of this algorithm is the

following. Given v = iqx,... , qw) and a prime p, find all primes q smaller
than a given limit with q > p and aq = ap . In order to do this efficiently, we

apply Propositions 2 and 3.
If, for example, p = 3 mod 4, then p has a binary signature

ovp = (Ai, ... , A™)   with Air € {0, 1} for i = 1,..., w.

Then by Proposition 2 all primes q = 3 mod 4 with iq¡/p) = iq¡/q), i =
I, ... ,w, satisfy avq = avp . But there might be primes q = 1 mod 4 which

have a binary signature aq . In order to find these q , we observe that

(QR) (-} = 1   for i = 1,..., w

must hold; since this condition is not sufficient (cf. example after Proposition
3), these q are only candidates for aq=ap.

Altogether, this means that the desired ö-values belong to

w w

22~w J\(q¡- 1) residue classes mod 8 • JJ q¡.
i=2 i=2

The residue classes defined by (QR) can be ignored in many cases, since we

know in advance (i.e., independently of p) which primes q below a given limit

satisfy (QR). So we know that
(Fl) there are only 9 primes q < 106, q = 1 mod 4, with binary signature

„(2,3,5,7,11).

q = 148201, 170809, 196681, 238681, 735529,
737641, 921001, 924361, 988681

and
(F2) there exist only 4 primes q < 107, q = 1 mod 4, with binary signature

(2,3,5,7,11,13,17).

q = 4179289, 7140169, 7781929, 8971561.

If, for instance, we have to determine all primes q < 1000000 with Oq2' '"'l1' =

of{~'n), then by (Fl) only the primes q < 1000000 in the 30 classes mod 9240
in the example after Proposition 2 solve the problem.

Another example shall be discussed for a prime p ^ 3 mod 4, where we
make use of Proposition 3. Let w = 1, that is i/ = (2,3,5,7, 11, 13, 17)
and p = 97. Determine all primes q < 300000 with avq = a%n. The max-

imal element in a£7 = (4, 4, 5, 5, 4, 5, 5) is 5. Thus, by Proposition 3 we
determine all primes q = 33 mod 64 that satisfy

(D = (t)=' - ®-G)-®-®-.
which yields 1440 classes mod 16336320. We find 12 primes q with 97 <
q < 300000 in these classes, only two of which satisfy avq = ofa: q = 257953,
271393.
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Further, we find 9 primes q = 1 mod 64, q < 300000, from the equation

®-®-©-Œ)-(t)-G[)-';
but none of them satisfies aq = o^. Therefore, the above 2 primes solve the
problem.

In step 3 of phase 2 we can achieve a great reduction of the number of primal-
ity tests by applying Propositions 2 and 3. Let v = (2, 3, 5, 7, 11, 13, 17),
g = 341550071728321, p = 307, q = 1987. Then step 3 of phase 2 consists
in computing all

r < 559909889   with r = 5227 mod 33762

and testing r for primality and for o" = rj%01. Therefore, 16584 such tests

have to performed. When we use Proposition 2 and solve the systems

(?)-(40.(t)-(ä).  '-»-«
and

we only have 304 /--values as test-candidates.

Applications. We apply the algorithm to the following two special cases for
w, g:

(SCI) ttfi = 5,       gx = 3474749660383,

(SC2) w2 = l,       ft = 341550071728321.

It will be shown that there exists only one strong pseudoprime n < gx to
the bases 2,3,5,7,11, and no strong pseudoprime n < g2 to the bases
2, 3,5, 7, 11, 13,17.

Further, we present all strong pseudoprimes < 1012 to the bases 2,3,5 in
Table 1 on the next page (see also Table 7 in [3]). It should be noted that Table

1 contains (in contrast to the results in [3]) two numbers being not of the form

(« + \){kn+\), namely 77475820141 = 176041-440101 and 183413388211 =
370891-494521.

(SCI). Let i/ = (2, 3, 5,7, 11).
(a) t>5.

Define Np to be the set of all primes q > p with aq = ap . If fpk denotes
the kth element of Np in ascending order, then we compute for each p < 317

the values fp,i,... , fp,4 and obtain

4 4

min/>- Y[fpk = 19- JJ/19,* >g\,
k=\ k={

so that no spsp(^, n) exists with n < gx and which has more than 4 factors.
(b) t = 4.

When t = 4, phase 1 of the algorithm yields 1557 feasible triplets ipx,p2,p3).
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Table 1. List of all strong pseudoprimes < 1012 to the bases 2, 3, 5

spsp-base

number factorisation 11 13 17

25326001
161304001
960946321

1157839381
3215031751
3697278427
5764643587
6770862367

14386156093
15579919981
18459366157
19887974881
21276028621
27716349961
29118033181
37131467521
41752650241
42550716781
43536545821
44732778751
44778481441
48354810571
52139147581
53700690781
56209415767
57698562127
67403434561
73796984161
74190097801
75285070351
75350936251
77475820141
79696887661
83828294551
88473676747
88974090367
98515393021

111737197441
114247549027
118670087467
126223730461
134670080641
135586888951
136136947201
148600530541
150401047441
156677923729
157615339681
167259489409
174460968067
183413388211
187403492251
216291665041
218215348801
218673063181
234311749201

2251 . 11251
7333.21997

11717.82013
24061 .48121

151 .751 .28351
30403. 121609
37963. 151849
41143. 164569

397.4357.8317
88261 . 176521
67933
81421

103141

271729
244261
206281

117721 .235441
120661 .241321
111253.
117973.
145861 •
147541 •
105751 .
122173.

331 .2971
161461 .
163861 .
118543.
120103.

333757
353917
291721
295081
423001
366517
.49171
322921
327721
474169
480409

149893.449677
156841 .470521

15 2551 .
137191 •
137251 .
176041 .
199621 .

1231 .6151
148723.
149143.
221941 .
149491 .
169003.
172243.
251221 .

192601
548761
549001
404101
399241
.11071
594889
596569
443881
747451
676009
688969
502441

211873.635617
184111 .736441
139457
272581

146581 .
177019
229213
182899
208843
370891
216451

175781 .
269701
330661

182957.

•976193
.545161
1026061
.885091
.687637
•914491
.835369
• 494521
.865801
1230461
.809101
.661321
1280693

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
0
0
0
0
1
0
0
0
0
I
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
I
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
()
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
0
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number

240438464197
244970876021
245291853691
247945488451
252505670761
272447722207
291879706861
295545735181
307768373641
315962312077
331630652449
342221459329
353193975751
354864744877
362742704101
398214876001
405439595861
407979839041
431229929521
457453568161
490883439061
503691743521
505130380987
528929554561
546348519181
549866444221
591090138721
602248359169
641498618881
659937299407
688529415421
712614969307
729421133761
733224429367
736775510329
741881186287
744049848481
774840343681
842638521121
851402588401
853196213761
863370140641
908201935681
966299321527
997031384161

factorisation

245173
202061 .

1171 . 1053
248971
355321

260983 .
382021

221941 .
392281

281053.
257539.
261619.
297151 .
297853.
301141 .
364333.
259949 .
368773.
182131 .
390493 .
495421

409753 .
355363.
419893.
522661 .
524341 .
443881 .
347059 .
462421 .
406183.
586741 .
422083 .
493093 .
428143.
383869 .
430663 .
498013.
508213.
529981 •
412651 .
349121 .
536461 .
550213.
491503.
576493 .

•980689
1212361

1 • 19891
•995881
•710641
1043929
.764041
1331641
.784561
1124209
1287691
1308091
1188601
1191409
1204561
1092997
1559689
1106317
2367691
1171477
.990841
1229257
1421449
1259677
1045321
1048681
1331641
1735291
1387261
1624729
1173481
1688329
1479277
1712569
1919341
1722649
1494037
1524637
1589941
2063251
2443841
1609381
1650637
1966009
1729477

spsp-base

II 13

It is easy to see that we only need to consider triplets with px < 1361,
p2 < 6427, p3 < 36269. In phase 2 we took b = 3. So we obtained 178
quadruples ipx ,p2,p3, p») which satisfy 3Pli>2/'3/'4_1 = 1 mod pxp2p3, but no

spsp(i/, pxp2p3p¿) was detected.

(c) t = 3.
Here, phase 1 yields 42233 feasible pairs (jpx, p2), where px, p2 could be re-

stricted to pi < 15139, p2<516991. In phase 2 we took b — 2 and found 261
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triplets (p\,p2,p3) with 2PlPlP3 x = 1 mod pxp2, only one spsp(i/, pxp2p3)

with pxp2p3 < gx was detected. This integer is

« = 2152302898747 = 6763 - 10627 - 29947.

Now, it is easy to verify that

gx = 3474749660383 = 1303 • 16927 - 157543

is a strong pseudoprime to the bases 2,3,5,7,11,13, which means that

y/5 < ñ and y/6 < gx.

(d) t = 2.
At first we compute for all primes p < ,/gl (that is p < 1864068) the value Xp

as defined above. We further define pp = (/? - \)IXP and xk to be the number

of primes p with 13 < p < 1864068 and pp = k. It turns out that

zk = 0fork>6,    t5 = 7,    t4 = 47,    t3 = 242,    tx + r2 = 139238.

This means that for nearly all p our search for primes q with spsp(^, pq) is

restricted to

q = i + k - ̂ -î-   with 3 < k < -t—-Tt.
2 -    - pip-l)

For small values of p this search is very time-consuming (for instance if p <

10000 then the number of &-values to be checked is > 69000). Therefore, we

used another procedure to perform this job when p < 10000. For each such p

we calculated
Ä = gcd(2p-1-l,3,'-1-l,5p-1-l)

and factored h (this is easy, since h usually has many small prime factors).

When h has a factor q > p, then we tested pq for strong pseudoprimality to

the bases 2,3,5,7,11.
Since no pair pq < gx with spsp(i/, pq) was detected, we have the results

^5 =: 2152302898747 and y/6 = 3474749660383.
(SC2). Let i/ = (2,3, 5,7, 11, 13, 17).
(a) t > 5 .

Analogous to the case (SCI) we compute for each p < 797 the values

fPti, ... , fp,4 and obtain

4 4

mmp- Y[fp,k = 131 • Il/i3i,¿ > g2,
k=l k=l

so that no spsp(i/, n) exists with n < g2 and which has more than 4 factors.

(b) t = 4.
When t = 4, phase 1 of the algorithm yields 1902 feasible triplets (pi, p2, p3).
In phase 2 we took b = 2. So we obtained 231 quadruples (pi, p2, p3, p^)
which satisfy 2PiPlPiPi~x = 1 mod pxp2p3, but no spsp(i/, pxp2p3P4) was de-

tected.
(c) i = 3.

Here, phase 1 yields 154953 feasible pairs ipx, p2). In phase 2 we put b =

2 and found 265 triplets ipx,p2,p3) with 2P,P2P3~X = 1 mod pxp2, but no

spsp(i^, pxp2p3) with pxp2p3 < g2 was detected.

(d) t = 2.
We compute Xp = lcm(2, hip),..., lxlip)) for each p < 18481073. We define
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xk to be the number of primes p with 19 < p < 18481073 and pp = k. It
turns out that

fi = 0forÂ:>6,     t5 = 1,     t4=15,     t3 = 207,     xx + x2 = 1179824.

Again, for nearly all p our search for primes q with spsp(^, pq) is restricted

to

q = l + k • ̂ -   with 3 < k <     2§2
2 -  -pip-iy

Here we factored

h = gcd(2p-' - 1, 3P~X - 1, 5p~x - 1)

for all p < 120000. It turned out that there is no spsp(^, pq) for pq < g2,
but g2 = 10670053 • 32010157 itself is a strong pseudoprime to the bases
2,3,5,7, 11, 13, 17, 19. This means that yi-¡ = y/% = g2 .

4. Upper bounds for y/$, y/x0, y/xx

In order to find upper bounds for y/9, y/xo, y/xx, we started an extensive

search for numbers of the forms

(HI) p{2p - 1)   with p, 2p - 1 prime,

(H2) pi3p - 2)   with p, 3p - 2 prime

which are strong pseudoprimes to the bases 2,3,5,7, 11, 13, 17, 19,23. In
the case of (HI) we used Proposition 4: i2£f^-) = 1 for b = 3, 5, 7, 11 and
p = 1 mod 4 yield together 15 residue classes mod 4620 :

p = 1, 181, 421, 481, 841, 1321, 1741, 1861, 2161, 2521, 3121,
3781, 3841, 3961, 4381 mod 4620.

It turns out that for p = 4540612081 the number

n=pi2p - 1) = 41234316135705689041

is an spsp(i/, n) for v = (2, 3, 5, 7, 11, 13, 17, 19, 23). This n yields the
upper bound for y/9 stated in § 1.

In the case of (H2) we solve the system

C-H
p = 13    mod 24,

b
1    foro = 5, 7, 11, 13, 17, 19,23

,3/7-2,

and obtain 400 residue classes mod 892371480. For each p in these classes we

test strong pseudoprimality to the bases 2,3,5,7, 11, 13, 17, 19, 23, 29, 31.
So we find

spsp((2,... , 29), pi3p - 2))   for p = 22754930352733,

spsp((2,...,31),/?(3p-2))   forp= 137716125329053.

These two numbers yield the upper bounds for ^o, y/xx stated in §1.

5. Other bases than the first primes

If we use only the first k primes as bases, then y/k is the limit up to which

primality tests are correct by performing k strong primality tests.  When we
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take instead k arbitrary primes as bases, it is evident that the above 'correctness

limit' may be increased considerably. But generally these bases are very large

and not easy to find. We give a short survey on the magnitude of the correctness

limit for up to 3 bases, when these are chosen conveniently.

Let v = (bi,..., bw), bj prime for i = I, ... , w , and define

Xu = min{«|spsp(i/, «)}.

Then we find for w = 1

max   Xb = X377687 = 5329,
b< 1000000

whereas X2 = 2047. For w = 2 we find

h ^„„^^1 = *<3'.73) = 9080191.

whereas ^(2,3) = 1373653 . We further computed

max   X(2,b) = 1(2,299417) = 19471033.è<300000    v  '  '

For w = 3 we find

*   Äinn*<*' •k-6') = *<2.7'6l) = 4759123141,
b\ ,bj ,03<1U0

whereas #(2,3,5) = 25326001. For w = 4 we have

max   X(2,i,5,b) = X(2,3,5,4086253) = 736775510329.6<5000000    v '

Recently, I found X(2,13,23,1662803) > 1012, meaning that up to 1012 only four

strong pseudoprimality tests are necessary for proving primality.

Remark. All computations have been performed on an IBM 3081 at Heidelberg

Scientific Center.
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