Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Quadrature formulas based on rational interpolation


Authors: Walter Van Assche and Ingrid Vanherwegen
Journal: Math. Comp. 61 (1993), 765-783
MSC: Primary 65D32; Secondary 41A05, 41A55, 42C05
DOI: https://doi.org/10.1090/S0025-5718-1993-1195424-6
MathSciNet review: 1195424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider quadrature formulas based on interpolation using the basis functions $ 1/(1 + {t_k}x)\quad (k = 1,2,3, \ldots )$ on $ [ - 1,1]$, where $ {t_k}$ are parameters on the interval $ ( - 1,1)$. We investigate two types of quadratures: quadrature formulas of maximum accuracy which correctly integrate as many basis functions as possible (Gaussian quadrature), and quadrature formulas whose nodes are the zeros of the orthogonal functions obtained by orthogonalizing the system of basis functions (orthogonal quadrature). We show that both approaches involve orthogonal polynomials with modified weights which depend on the number of quadrature nodes. The asymptotic distribution of the nodes is obtained as well as various interlacing properties and monotonicity results for the nodes.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Achieser, Theory of approximation, Ungar, New York, 1956. MR 0095369 (20:1872)
  • [2] D. L. Barrow, On multiple node Gaussian quadrature formulae, Math. Comp. 32 (1979), 431-439. MR 482257 (80j:41045)
  • [3] B. D. Bojanov, D. Braess, and N. Dyn, Generalized Gaussian quadrature formulas, J. Approx. Theory 48 (1986), 335-353. MR 865436 (88c:41049)
  • [4] D. Braess, Nonlinear approximation theory, Springer-Verlag, Berlin, 1986. MR 866667 (88e:41002)
  • [5] R. P. Brent, A FORTRAN multiple-precision arithmetic package, ACM Trans. Math. Software 4 (1978), 57-70.
  • [6] E. W. Cheney, Introduction to approximation theory. II, McGraw-Hill, New York, 1966. MR 0222517 (36:5568)
  • [7] P. J. Davis, Interpolation and approximation, Blaisdell, New York, 1965. MR 0157156 (28:393)
  • [8] P. J. Davis and P. Rabinowitz, Methods of numerical integration, 2nd ed., Academic Press, New York, 1984. MR 760629 (86d:65004)
  • [9] W. Gautschi, Gauss-type quadrature rules for rational functions, Numerical Integration IV (H. Brass and G. Hämmerlin, eds.) (to appear). MR 1248398 (94m:65044)
  • [10] -, On the computation of generalized Fermi-Dirac and Bose-Einstein integrals, Comput. Phys. Comm. 74 (1993), 233-238. MR 1202296 (93m:33018)
  • [11] A. A. Gonchar and E. A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials, Mat. Sb. 125 (167) (1984), 117-127; English transl. in Math. USSR-Sb. 53 (1986), 119-130. MR 760416 (86f:41002)
  • [12] S. Karlin and A. Pinkus, Gaussian quadrature formulae with multiple nodes, Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 113-142. MR 0477575 (57:17094)
  • [13] -, An extremal property of multiple Gaussian nodes, Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 143-162. MR 0481763 (58:1862)
  • [14] S. Karlin and W. J. Studden, Tchebycheff systems with applications in analysis and statistics, Interscience, New York, 1966. MR 0204922 (34:4757)
  • [15] M. Krein, The ideas of P.L. Chebysheff and A.A. Markov in the theory of limiting values of integrals and their further developments, Uspekhi Fiz. Nauk (1951), 3-120; English transl., Amer. Math. Soc. Transl. (2) 12 (1951), 1-122.
  • [16] G. López Lagomasino, Relative asymptotics for polynomials orthogonal on the real axis, Mat. Sb. 137 (179) (1988); English transl. in Math. USSR-Sb. 65 (1990), 505-529. MR 981523 (90c:42030)
  • [17] -, Asymptotics of polynomials orthogonal with respect to varying measures, Constr. Approx. 5 (1989), 199-219. MR 989673 (90h:42036)
  • [18] G. López Lagomasino and J. Illán, A note on generalized quadrature formulas of Gauss-Jacobi type, Constructive Theory of Function '84, Sofia, pp. 513-518.
  • [19] -, Sobre los métodos interpolatorios de integración numérica y su conexión con la aproximación racional, Rev. Cienc. Mat. (2) 8 (1987), 31-44.
  • [20] G. López, Szegő's theorem for polynomials orthogonal with respect to varying measures, Orthogonal Polynomials and their Applications, Lecture Notes in Math., vol. 1329, Springer-Verlag, Berlin, 1988, pp. 255-260.
  • [21] G. López and E. A. Rakhmanov, Rational approximations, orthogonal polynomials and equilibrium distributions, Orthogonal Polynomials and their Applications, Lecture Notes in Math., vol. 1329, Springer-Verlag, Berlin, 1988, pp. 125-157. MR 973424 (90d:41028)
  • [22] H. N. Mhaskar and E. B. Saff, Weighted polynomials on finite and infinite intervals: a unified approach, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 351-354. MR 752796 (86b:41015)
  • [23] -, Where does the sup norm of a weighted polynomial live? (a generalization of incomplete polynomials), Constr. Approx. 1 (1985), 71-91. MR 766096 (86a:41004)
  • [24] -, Where does the $ {L^p}$-norm of a weighted polynomial live?, Trans. Amer. Math. Soc. 303 (1987), 109-124. MR 896010 (88k:41033a)
  • [25] A. Pinkus and Z. Ziegler, Interlacing properties of the zeros of the error functions in best $ {L^p}$-approximations, J. Approx. Theory 27 (1979), 1-18. MR 554112 (81c:41063)
  • [26] G. Szegő, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.
  • [27] H. Van de Vel and I. Vanherwegen, Quadrature formulas based on interpolation using $ \gamma $-polynomials, manuscript.
  • [28] V.S. Videnskiĭ, On zeros of orthogonal polynomials, Soviet Math. Dokl. 4 (1963), 1479-1482.
  • [29] S. Wolfram, Mathematica extsctm , A system for doing mathematics by computer, Addison-Wesley, New York, 1988.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D32, 41A05, 41A55, 42C05

Retrieve articles in all journals with MSC: 65D32, 41A05, 41A55, 42C05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1195424-6
Keywords: Quadrature, rational interpolation, orthogonal polynomials
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society