Finite element approximations of nonlinear elastic waves

Author:
Charalambos G. Makridakis

Journal:
Math. Comp. **61** (1993), 569-594

MSC:
Primary 73V05; Secondary 65M60, 73D15, 73D35

DOI:
https://doi.org/10.1090/S0025-5718-1993-1195426-X

MathSciNet review:
1195426

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study finite element methods for a class of problems of nonlinear elastodynamics. We discretize the equations in space using Galerkin methods. For the temporal discretization, the construction of our schemes is based on rational approximations of and . We analyze semidiscrete as well as second- and fourth-order accurate in time fully discrete methods for the approximation of the solution of the problem and prove optimal-order error estimates. For some schemes a Taylor-type technique is used so that only linear systems of equations need be solved at each time step. In the proofs we need various estimates for a nonlinear elliptic projection, the proofs of which are also established in the paper.

**[1]**G. A. Baker and J. H. Bramble,*Semidiscrete and fully discrete approximations for second-order hyperbolic equations*, RAIRO Anal. Numér.**13**(1979), 75-100. MR**533876 (80f:65115)****[2]**G. A. Baker, V. A. Dougalis, and S. M. Serbin,*High-order two-step approximations for hyperbolic equations*, RAIRO Anal. Numér.**13**(1979), 201-226. MR**543933 (81c:65044)****[3]**L. A. Bales,*Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients*, Math. Comp.**43**(1984), 383-414. MR**758190 (86g:65179a)****[4]**-,*High-order single-step fully discrete approximations for nonlinear second order hyperbolic equations*, Comput. Math. Appl.**12A**(1986), 581-604. MR**841989 (87h:65164)****[5]**L. A. Bales, V. A. Dougalis, and S. M. Serbin,*Cosine methods for second-order hyperbolic equations with time-dependent coefficients*, Math. Comp.**45**(1985), 65-89. MR**790645 (86j:65112)****[6]**L. A. Bales and V. A. Dougalis,*Cosine methods for nonlinear second-order hyperbolic equations*, Math. Comp.**52**(1989), 299-319, S15-S33. MR**955747 (89k:65113)****[7]**J. H. Bramble and P. H. Sammon,*Efficient high-order single-step methods for parabolic problems*:*Part*II, unpublished manuscript.**[8]**V. C. Chen and W. von Wahl,*Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung*, J. Reine Angew. Math.**337**(1982), 77-112. MR**676043 (84b:35081)****[9]**P. G. Ciarlet,*The finite element method for elliptic problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[10]**C. M. Dafermos and W. J. Hrusa,*Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics*, Arch. Rational Mech. Anal.**87**(1985), 267-292. MR**768069 (86k:35086)****[11]**J. E. Dendy, Jr.,*Galerkin's method for some highly nonlinear problems*, SIAM J. Numer. Anal.**14**(1977), 327-347. MR**0433914 (55:6884)****[12]**M. Dobrowolski and R. Rannacher,*Finite element methods for nonlinear elliptic systems of second order*, Math. Nachr.**94**(1980), 155-172. MR**582526 (81i:65087)****[13]**T. Dupont, -*estimates for Galerkin methods for second-order hyperbolic equations*, SIAM J. Numer. Anal.**10**(1973), 880-889. MR**0349045 (50:1539)****[14]**G. Fichera,*Existence theorems in elasticity*, Encyclopedia of Physics, vol. VI a/2 (C. Truesdell, ed.), Springer-Verlag, Berlin, Heidelberg, New York, 1972, pp. 347-389.**[15]**M. E. Gurtin,*An introduction to continuum mechanics*, Academic Press, New York, 1981. MR**636255 (84c:73001)****[16]**Ch. G. Makridakis,*Galerkin/finite element methods for the equations of elastodynamics*, Ph.D. thesis, Univ. of Crete, 1989. (Greek)**[17]**-,*Cosine methods for a class of semilinear second-order wave equations*, Comput. Math. Appl.**19**(1990), 19-34. MR**1044632 (91d:65141)****[18]**-,*Finite element approximations of nonlinear elastic waves*, Technical Report, Dept. of Mathematics, Univ. of Crete, 1992.**[19]**R. Rannacher,*On finite element approximation of general boundary value problems in nonlinear elasticity*, Calcolo**17**(1980), 175-193. MR**615816 (82f:73019)****[20]**-, Private communication, 1988.**[21]**R. Rannacher and R. Scott,*Some optimal error estimates for piecewise linear finite element approximations*, Math. Comp.**38**(1982), 437-470. MR**645661 (83e:65180)**

Retrieve articles in *Mathematics of Computation*
with MSC:
73V05,
65M60,
73D15,
73D35

Retrieve articles in all journals with MSC: 73V05, 65M60, 73D15, 73D35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1993-1195426-X

Article copyright:
© Copyright 1993
American Mathematical Society