Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The relative class numbers of imaginary cyclic fields of degrees $ 4,\;6,\;8,$ and $ 10$


Author: Kurt Girstmair
Journal: Math. Comp. 61 (1993), 881-887, S25
MSC: Primary 11R29; Secondary 11R18, 11R20, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1993-1195428-3
MathSciNet review: 1195428
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We express the relative class number of an imaginary abelian number field K of prime power conductor as a sort of Maillet determinant. Thereby we obtain explicit relative class number formulas for fields K of conductor p, $ p \geq 3$ prime, and degree $ 2d = [K:\mathbb{Q}] \leq 10$, in terms of sums of 2d-power residues. In particular, tables are given for $ p \leq 10000$.


References [Enhancements On Off] (What's this?)

  • [1] L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. 6 (1955), 265-269. MR 0069207 (16:999d)
  • [2] K. Girstmair, An index formula for the relative class number of an abelian number field, J. Number Theory 32 (1989), 100-110. MR 1002117 (91d:11132)
  • [3] -, A recursion formula for the relative class number of the $ {p^n}$-th cyclotomic field, Abh. Math. Sem. Univ. Hamburg 61 (1991), 131-138. MR 1138278 (92j:11119)
  • [4] H. Hasse, Vorlesungen über Zahlentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950. MR 0253972 (40:7185)
  • [5] -, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.
  • [6] R. Hudson, Class numbers of imaginary cyclic quartic fields and related quaternary systems, Pacific J. Math. 115 (1984), 129-142. MR 762205 (85k:11012)
  • [7] R. Hudson and K. Williams, A class number formula for certain quartic fields, Carleton Math. Series 174 (1981).
  • [8] J. Kühnová, Maillet's determinant $ {D_{{p^{n + 1}}}}$, Archivum Math. 15 (1979), 209-212. MR 563149 (82e:12003)
  • [9] B. Setzer, The determination of all imaginary, quartic, abelian number fields with class number 1, Math. Comp. 35 (1980), 1383-1386. MR 583516 (81k:12005)
  • [10] L. Skula, Another proof of Iwasawa's class number formula, Acta Arith. 39 (1981), 1-6. MR 638737 (83c:12010)
  • [11] K. Tateyama, Maillet's determinant, Sci. Papers College Gen. Ed. Tokyo 32 (1982), 97-100. MR 694835 (85c:11095)
  • [12] K. Wang, On Maillet determinant, J. Number Theory 18 (1984), 306-312. MR 746866 (85m:11072)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R29, 11R18, 11R20, 11Y40

Retrieve articles in all journals with MSC: 11R29, 11R18, 11R20, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1195428-3
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society