Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Periods of cusp forms and elliptic curves over imaginary quadratic fields


Authors: J. E. Cremona and E. Whitley
Journal: Math. Comp. 62 (1994), 407-429
MSC: Primary 11F67; Secondary 11F66, 11G05, 11G40
DOI: https://doi.org/10.1090/S0025-5718-1994-1185241-6
MathSciNet review: 1185241
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we explore the arithmetic correspondence between, on the one hand, (isogeny classes of) elliptic curves E defined over an imaginary quadratic field K of class number one, and on the other hand, rational newforms F of weight two for the congruence subgroups $ {\Gamma _0}(\mathfrak{n})$, where n is an ideal in the ring of integers R of K. This continues work of the first author and forms part of the Ph.D. thesis of the second author. In each case we compute numerically the value of the L-series $ L(F,s)$ at $ s = 1$ and compare with the value of $ L(E,1)$ which is predicted by the Birch-Swinnerton-Dyer conjecture, finding agreement to several decimal places. In particular, we find that $ L(F,1) = 0$ whenever $ E(K)$ has a point of infinite order. Several examples are given in detail from the extensive tables computed by the authors.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Buhler and B. H. Gross, Arithmetic on curves with complex multiplication. II, Invent. Math. 79 (1985), 11-29. MR 774527 (86j:11066)
  • [2] J. P. Buhler, B. H. Gross, and D. B. Zagier, On the conjecture of Birch and Swinnerton Dyer for an elliptic curve of rank 3, Math. Comp. 44 (1985), 473-481. MR 777279 (86g:11037)
  • [3] J. W. S. Cassels, Arithmetic on curves of genus 1 (IV). Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95-112. MR 0163915 (29:1214)
  • [4] D. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. 30 (1984), 270-330. MR 767905 (86a:01027)
  • [5] J. E. Cremona, Modular symbols, D.Phil. thesis, Oxford, 1981.
  • [6] -, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compositio Math. 51 (1984), 275-323. MR 743014 (85j:11063)
  • [7] -, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields (Addendum and Errata), Compositio Math. 63 (1987), 271-272. MR 906375 (89a:11058)
  • [8] -, Algorithms for modular elliptic curves, Cambridge Univ. Press, 1992. MR 1201151 (93m:11053)
  • [9] -, Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields, J. London Math. Soc. (2) 45 (1992), 404-416. MR 1180252 (93h:11056)
  • [10] S. Friedberg, On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level, Nagoya Math. J. 92 (1983). MR 726137 (85f:11031)
  • [11] P. Gérardin, J. P. Labesse, Base change problem for $ GL(2)$, Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., vol. 33 (Part 2), Amer. Math. Soc., Providence, RI, 1979, pp. 115-133.
  • [12] S. Kamienny, Torsion points on elliptic curves, Bull. Amer. Math. Soc. (N. S.) 23 (1990), 371-373. MR 1058689 (92a:11067)
  • [13] P. F. Kurčanov, Cohomology of discrete groups and Dirichlet series connected with Jacquet-Langlands cusp forms, Math. USSR Izv. 12 (1978), 543-555.
  • [14] S. Lang, Elliptic curves and Diophantine analysis, Springer-Verlag, Berlin and New York, 1978. MR 518817 (81b:10009)
  • [15] J. Elstrodt, F. Grunewald, and J. Mennicke, On the group $ PS{L_2}(\mathbb{Z}[i])$, J. Arith. 1980, LMS Lecture Notes, vol. 56, Cambridge Univ. Press, 1981.
  • [16] T. Miyake, On automorphic forms for $ GL(2)$ and Hecke operators, Ann. of Math. 94 (1971), 174-189. MR 0299559 (45:8607)
  • [17] J.-P. Serre, Propriétés galoisiennes des points d'ordre finis des courbes elliptiques, Invent. Math. 15 (1972), 259-331. MR 0387283 (52:8126)
  • [18] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. MR 942161 (89d:11049)
  • [19] G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75-106. MR 1010156 (90m:11089)
  • [20] J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris 273 (1971), 238-241. MR 0294345 (45:3414)
  • [21] A. Weil, Zeta functions and Mellin transforms, Colloquium on Algebraic geometry, Bombay, 1968. MR 0262247 (41:6857)
  • [22] -, Dirichlet series and automorphic forms, Lecture Notes in Math., vol. 189, Springer-Verlag, Berlin and New York, 1971.
  • [23] E. Whitley, Modular symbols and elliptic curves over imaginary quadratic number fields, Ph.D. thesis, Exeter University, 1990.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11F67, 11F66, 11G05, 11G40

Retrieve articles in all journals with MSC: 11F67, 11F66, 11G05, 11G40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1185241-6
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society