Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Consistency estimates for a double-layer potential and application to the numerical analysis of the boundary-element approximation of acoustic scattering by a penetrable object


Authors: A. Bendali and M. Souilah
Journal: Math. Comp. 62 (1994), 65-91
MSC: Primary 65N38; Secondary 65R20, 76M15, 76Q05
DOI: https://doi.org/10.1090/S0025-5718-1994-1201067-9
MathSciNet review: 1201067
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The consistency of the approximation of a double-layer potential when using a boundary-element method and approximating the curved boundary by a polygonal curve in two-dimensional problems or by a polyhedral surface in three-dimensional ones is investigated. The results are applied to the numerical analysis of the approximation of a model problem: the diffraction of a time-harmonic acoustic wave by a penetrable object.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Part II, Comm. Pure Appl. Math. 27 (1964), 35-92. MR 0162050 (28:5252)
  • [2] A. Bendali, Approximation par éléments finis de surface de problèmes de diffraction d'ondes électromagnétiques, Thèse de Doctorat d'Etat Es-Sciences Mathématiques, Univ. P. & M. Curie, Paris VI, Paris, 1984.
  • [3] -, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 2. The discrete problem, Math. Comp. 43 (1984), 47-68. MR 744924 (86i:65071b)
  • [4] Y. Chang and R. F. Harrington, A surface formulation for characteristic modes of material bodies, Technical Report no. 2 AD/A 000 285 NTIS U.S. Department of Commerce, 1974.
  • [5] J. Chazarain and A. Piriou, Introduction to the theory of linear partial differential equations, North-Holland, Amsterdam and New York, 1982. MR 678605 (83j:35001)
  • [6] D. Clair, Caractérisation du rayonnement plan E de cornets sectoraux plan H à l'aide d'une méthode bidimensionnelle, Thèse de Doctorat de $ 3^{\grave{\text{e}}\text{me}}$ cycle, Univ. P. & M. Curie, Paris VI, Paris, 1983.
  • [7] D. Colton and R. Kress, Integral equation methods in scattering theory, Wiley, New York, 1983. MR 700400 (85d:35001)
  • [8] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal. 19 (1988), 613-626. MR 937473 (89h:35090)
  • [9] M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 372 (1985), 367-413. MR 782799 (86f:76045)
  • [10] M. Costabel and W. L. Wendland, Strong ellipticity of boundary integral operators, J. Reine Angew. Math. 372 (1986), 39-63. MR 863517 (88c:35048)
  • [11] N. Germain, Cours de mécanique des milieux continus, Masson, Paris, 1973.
  • [12] J. Giroire, Integral equation methods for exterior problem for Helmholtz equation, Rapport interne no. 40, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France, 1978.
  • [13] -, Integral equation methods for the Helmholtz equation, Integral Equations Operator Theory 5 (1982), 505-517. MR 665145 (84m:45029)
  • [14] N. M. Gunter, Potential theory and its application to basic problems of mathematical physics, Ungar, New York, 1967. MR 0222316 (36:5368)
  • [15] M. A. Hamdi, Une formulation variationnelle par équations intégrales pour la résolution de l'équation de Helmholtz avec des conditions aux limites mixtes, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981), 17-20. MR 637242 (82k:35027)
  • [16] R. F. Harrington, Characteristic modes for antennas and scatterers, Numerical and Asymptotic Techniques in Electromagnetics (R. Mittra, ed.), Topics in Applied Physics, vol. 3, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 51-87.
  • [17] G. C. Hsiao and W. L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), 449-481. MR 0461963 (57:1945)
  • [18] C. Johnson and J. C. Nédélec, On the coupling of the boundary integral and finite element methods, Math. Comp. 35 (1980), 1063-1079. MR 583487 (82c:65072)
  • [19] R. E. Kleinman and P. A. Martin, On single integral equations for the transmission problem of acoustics, SIAM J. Appl. Math. 48 (1988), 307-325. MR 933037 (89f:35053)
  • [20] R. Kress and G. F. Roach, Transmission problems for the Helmholtz equation, J. Math. Phys. 19 (1978), 1433-1437. MR 0495653 (58:14318)
  • [21] G. Krishnasamy, F. Rizzo, and T. Rudolphi, Hypersingular boundary integral equations: Their occurrence, interpretation, regularization, and computation, Developments in Boundary Elements Methods, vol. 7: Adv. Dynamic Analysis (P. K. Banerjee and S. Kobayashi, eds.), Elsevier, Amsterdam, 1991, pp. 207-252.
  • [22] M. N. Le Roux, Méthode d'éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2, RAIRO Anal. Numér. 11 (1977), 27-60. MR 0448954 (56:7259)
  • [23] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
  • [24] J. C. Nédélec, Approximations des équations intégrales en mécanique et en physique, Cours EDF-CEA-IRIA, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France, 1977.
  • [25] -, Curved finite element methods for the solution of singular integral equations on surfaces in $ {\mathbb{R}^3}$, Comput. Methods Appl. Mech. Engrg. 8 (1976), 61-80. MR 0455503 (56:13741)
  • [26] -, Integral equations with non-integrable kernels, Integral Equations Operator Theory 5 (1982), 561-572.
  • [27] J. C. Nédélec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution d'un problème extérieur dans $ {\mathbb{R}^3}$, RAIRO Sér. Rouge 7 (1973), 105-129. MR 0424022 (54:11992)
  • [28] U. Neri, Singular integrals, Lecture Notes in Math., vol. 200, Springer-Verlag, Berlin, Heidelberg, and New York, 1971. MR 0463818 (57:3757)
  • [29] R. S. Phillips, On the exterior problem for the reduced wave equation, Proc. Sympos. Pure Math., vol. 23, Partial Differential Equations (D. C. Spencer, ed.), Amer. Math. Soc., Providence, RI, 1973, pp. 153-160. MR 0338545 (49:3309)
  • [30] F. Rellich, Über das asymptotische Verhalten der Lösungen von $ \Delta u + \lambda u = 0$ in unendlichen Gebieten, Jahresber. Deutsch. Math.-Verein. 53 (1943), 57-65. MR 0017816 (8:204c)
  • [31] V. Rokhlin, Solution of acoustic scattering problems by means of second kind integral equations, Wave Motion 5 (1983), 257-272. MR 708481 (85a:76087)
  • [32] G. Schwab and W. L. Wendland, On numerical cubatures of singular surface integrals in boundary element methods, Numer. Math. 62 (1992), 343-369. MR 1169009 (93h:65035)
  • [33] R. Seeley, Topics in pseudo-differential operators, Pseudo-Differential Operators (L. Nirenberg, ed.), CIME, Stresa II ciclo, Aug. 26-Sept. 3, 1968, Edizioni Cremonese, Roma, 1969. MR 0259335 (41:3973)
  • [34] A. Sequeira, The coupling of boundary integral and finite element methods for the bidimensional steady Stokes problem, Rapport interne no. 82, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France, 1982.
  • [35] G. Strang and G. J. Fix, An analysis of the finite-element method, Prentice-Hall, Englewood Cliffs, NJ, 1973. MR 0443377 (56:1747)
  • [36] A. Van Herk, Three dimensional analysis of magnetic fields in recording head configuration, IEEE Trans. Magnetics 5 MAG-16 (1980), 890-892.
  • [37] C. H. Wilcox, Scattering theory for the D'Alembert equation in exterior domains, Lecture Notes in Math., vol. 442, Springer-Verlag, Berlin, Heidelberg, New York, 1975. MR 0460927 (57:918)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N38, 65R20, 76M15, 76Q05

Retrieve articles in all journals with MSC: 65N38, 65R20, 76M15, 76Q05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1201067-9
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society