Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Deciphering singularities by discrete methods


Authors: Yves Tourigny and Michael Grinfeld
Journal: Math. Comp. 62 (1994), 155-169
MSC: Primary 65L05; Secondary 65P05
DOI: https://doi.org/10.1090/S0025-5718-1994-1203737-5
MathSciNet review: 1203737
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of estimating numerically the parameters of singularities of solutions of differential equations. We propose a novel approach which is based on discretizing the governing equation and "time-stepping" in the complex domain. Some applications to ordinary and partial differential equations are discussed.


References [Enhancements On Off] (What's this?)

  • [1] G. A. Baker and P. Graves-Morris, Padé approximants. vol. 1, Addison-Wesley, Reading, MA, 1981.
  • [2] M. Berger and R. V. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math. 41 (1988), 841-863. MR 948774 (89g:65154)
  • [3] R. P. Brent and H. T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comput. Mach. 25 (1978), 581-595. MR 0520733 (58:25090)
  • [4] J. C. Butcher, The numerical analysis of ordinary differential equations, Runge-Kutta methods and general linear methods, Wiley, Chichester, 1987. MR 878564 (88d:65002)
  • [5] Y. F. Chang and G. Corliss, Ratio-like and recurrence tests for convergence of series, IMA J. Appl. Math. 25 (1980), 349-359. MR 578082 (81i:40004)
  • [6] G. Corliss, On computing Darboux type series analyses, Nonlinear Anal. 7 (1983), 1247-1253. MR 721410 (86d:65042)
  • [7] -, Integrating ODE's in the complex plane--pole vaulting, Math. Comp. 35 (1980), 1181-1189. MR 583495 (81m:65115)
  • [8] G. Corliss and Y. F. Chang, Solving ordinary differential equations using Taylor series, ACM Trans. Math. Software 8 (1982), 114-144. MR 661124 (83g:65072)
  • [9] J. W. Dold, Analysis of the early stage of thermal runaway, Quart. J. Mech. Appl. Math. 38 (1985), 361-387.
  • [10] P. Henrici, Applied and computational complex analysis, vol. 1, Wiley, New York, 1974. MR 0372162 (51:8378)
  • [11] F. Hildebrand, Introduction to numerical analysis, McGraw-Hill, New York, 1956. MR 0075670 (17:788d)
  • [12] E. Hille, Ordinary differential equations in the complex domain, Wiley, New York, 1976. MR 0499382 (58:17266)
  • [13] C. Hunter, personal communication, 1992.
  • [14] C. Hunter and B. Guerrieri, Deducing the properties of singularities of functions from their Taylor series coefficients, SIAM J. Appl. Math. 39 (1980), 248-263. MR 588498 (82b:65015a)
  • [15] Y. Kimura, Parametric motion of complex-time singularity toward real collapse, Phys. D 46 (1990), 439-448. MR 1081692 (91j:34067)
  • [16] J. D. Lambert and B. Shaw, A method for the numerical solution of $ y' = f(x,y)$ based on a selfadjusting non-polynomial interpolant, Math. Comp. 20 (1966), 11-20. MR 0189252 (32:6679)
  • [17] H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), 262-288. MR 1056055 (91j:35135)
  • [18] J. N. Lyness, Differentiation formulas for analytic functions, Math Comp. 21 (1967), 352-362. MR 0230468 (37:6030)
  • [19] D. I. Meiron, G. R. Baker, and S. Orszag, Analytic structure of vortex sheet dynamics. Part 1. Kelvin-Helmholtz instability, J. Fluid Mech. 114 (1982), 283-298. MR 647268 (83c:76017)
  • [20] T. Nakagawa, Blowing up of a finite difference solution to $ {u_t} = {u_{xx}} + {u^2}$, Appl. Math. Optim. 2 (1976), 337-350. MR 0423823 (54:11797)
  • [21] L. E. Payne, Improperly posed problems in partial differential equations, SIAM, Philadelphia, PA, 1975. MR 0463736 (57:3678)
  • [22] B. Shaw, Modified multistep methods based on a nonpolynomial interpolant, J. Assoc. Comput. Mach. 14 (1967), 143-154. MR 0213029 (35:3894)
  • [23] C. Sulem, P. L. Sulem, and H. Frisch, Tracing complex singularities with spectral methods, J. Comput. Phys. 50 (1983), 138-161. MR 702063 (84m:58088)
  • [24] Y. Tourigny and J. M. Sanz-Serna, The numerical study of blowup with application to a nonlinear Schrödinger equation, J. Comput. Phys. 102 (1992). MR 1187698 (93g:65161)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L05, 65P05

Retrieve articles in all journals with MSC: 65L05, 65P05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1203737-5
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society