Deciphering singularities by discrete methods

Authors:
Yves Tourigny and Michael Grinfeld

Journal:
Math. Comp. **62** (1994), 155-169

MSC:
Primary 65L05; Secondary 65P05

MathSciNet review:
1203737

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of estimating numerically the parameters of singularities of solutions of differential equations. We propose a novel approach which is based on discretizing the governing equation and "time-stepping" in the complex domain. Some applications to ordinary and partial differential equations are discussed.

**[1]**G. A. Baker and P. Graves-Morris,*Padé approximants*. vol. 1, Addison-Wesley, Reading, MA, 1981.**[2]**Marsha Berger and Robert V. Kohn,*A rescaling algorithm for the numerical calculation of blowing-up solutions*, Comm. Pure Appl. Math.**41**(1988), no. 6, 841–863. MR**948774**, 10.1002/cpa.3160410606**[3]**R. P. Brent and H. T. Kung,*Fast algorithms for manipulating formal power series*, J. Assoc. Comput. Mach.**25**(1978), no. 4, 581–595. MR**0520733****[4]**J. C. Butcher,*The numerical analysis of ordinary differential equations*, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987. Runge\mhy Kutta and general linear methods. MR**878564****[5]**Y. F. Chang and G. Corliss,*Ratio-like and recurrence relation tests for convergence of series*, J. Inst. Math. Appl.**25**(1980), no. 4, 349–359. MR**578082****[6]**George Corliss,*On computing Darboux type series analyses*, Nonlinear Anal.**7**(1983), no. 11, 1247–1253. MR**721410**, 10.1016/0362-546X(83)90056-1**[7]**George F. Corliss,*Integrating ODEs in the complex plane—pole vaulting*, Math. Comp.**35**(1980), no. 152, 1181–1189. MR**583495**, 10.1090/S0025-5718-1980-0583495-8**[8]**George Corliss and Y. F. Chang,*Solving ordinary differential equations using Taylor series*, ACM Trans. Math. Software**8**(1982), no. 2, 114–144. MR**661124**, 10.1145/355993.355995**[9]**J. W. Dold,*Analysis of the early stage of thermal runaway*, Quart. J. Mech. Appl. Math.**38**(1985), 361-387.**[10]**Peter Henrici,*Applied and computational complex analysis*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Volume 1: Power series—integration—conformal mapping—location of zeros; Pure and Applied Mathematics. MR**0372162****[11]**F. B. Hildebrand,*Introduction to numerical analysis*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. MR**0075670****[12]**Einar Hille,*Ordinary differential equations in the complex domain*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. Pure and Applied Mathematics. MR**0499382****[13]**C. Hunter, personal communication, 1992.**[14]**C. Hunter and B. Guerrieri,*Deducing the properties of singularities of functions from their Taylor series coefficients*, SIAM J. Appl. Math.**39**(1980), no. 2, 248–263. MR**588498**, 10.1137/0139022**[15]**Yoshifumi Kimura,*Parametric motion of complex-time singularity toward real collapse*, Phys. D**46**(1990), no. 3, 439–448. MR**1081692**, 10.1016/0167-2789(90)90104-W**[16]**J. D. Lambert and B. Shaw,*A method for the numerical solution of 𝑦′=𝑓(𝑥,𝑦) based on a self-adjusting non-polynomial interpolant*, Math. Comp.**20**(1966), 11–20. MR**0189252**, 10.1090/S0025-5718-1966-0189252-1**[17]**Howard A. Levine,*The role of critical exponents in blowup theorems*, SIAM Rev.**32**(1990), no. 2, 262–288. MR**1056055**, 10.1137/1032046**[18]**J. N. Lyness,*Differentiation formulas for analytic functions*, Math. Comp.**22**(1968), 352–362. MR**0230468**, 10.1090/S0025-5718-1968-0230468-5**[19]**Daniel I. Meiron, Gregory R. Baker, and Steven A. Orszag,*Analytic structure of vortex sheet dynamics. I. Kelvin-Helmholtz instability*, J. Fluid Mech.**114**(1982), 283–298. MR**647268**, 10.1017/S0022112082000159**[20]**Tomoyasu Nakagawa,*Blowing up of a finite difference solution to 𝑢_{𝑡}=𝑢ₓₓ+𝑢₂.*, Appl. Math. Optim.**2**(1975/76), no. 4, 337–350. MR**0423823****[21]**L. E. Payne,*Improperly posed problems in partial differential equations*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics, No. 22. MR**0463736****[22]**Brian Shaw,*Modified multistep methods based on a nonpolynomial interpolant*, J. Assoc. Comput. Mach.**14**(1967), 143–154. MR**0213029****[23]**Catherine Sulem, Pierre-Louis Sulem, and Hélène Frisch,*Tracing complex singularities with spectral methods*, J. Comput. Phys.**50**(1983), no. 1, 138–161. MR**702063**, 10.1016/0021-9991(83)90045-1**[24]**Y. Tourigny and J. M. Sanz-Serna,*The numerical study of blowup with application to a nonlinear Schrödinger equation*, J. Comput. Phys.**102**(1992), no. 2, 407–416. MR**1187698**, 10.1016/0021-9991(92)90382-9

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05,
65P05

Retrieve articles in all journals with MSC: 65L05, 65P05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1203737-5

Article copyright:
© Copyright 1994
American Mathematical Society