Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Simple perfect squared squares and $ 2\times 1$ squared rectangles of order $ 25$


Author: A. J. W. Duijvestijn
Journal: Math. Comp. 62 (1994), 325-332
MSC: Primary 05B99
DOI: https://doi.org/10.1090/S0025-5718-1994-1208220-9
MathSciNet review: 1208220
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note tables of all simple perfect squared squares and simple $ 2 \times 1$ perfect squared rectangles of order 25 are presented.


References [Enhancements On Off] (What's this?)

  • [1] C. J. Bouwkamp, On the dissection of rectangles into squares. I, Nederl. Akad. Wetensch., Proc. 49 (1946), 1176–1188 = Indagationes Math. 8, 724–736 (1946). MR 0019310
  • [2] C. J. Bouwkamp, On the construction of simple perfect squared squares, Nederl. Akad. Wetensch., Proc. 50 (1947), 1296–1299 = Indagationes Math. 9, 622–625 (1947). MR 0023272
  • [3] C. J. Bouwkamp, On the dissection of rectangles into squares. II, III, Nederl. Akad. Wetensch., Proc. 50 (1947), 58–71, 72–78 = Indagationes Math. 9, 43–56, 57–63 (1947). MR 0019311
  • [4] -, On the dissection of rectangles into squares III, Kon. Nederl. Akad. Wetensch. 50 (1947), 72-78 (= Indag. Math. 9 (1947), 57-63).
  • [5] C. J. Bouwkamp, On some new simple perfect squared squares, Discrete Math. 106/107 (1992), 67–75. A collection of contributions in honour of Jack van Lint. MR 1181898, https://doi.org/10.1016/0012-365X(92)90531-J
  • [6] R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312–340. MR 0003040
  • [7] A. J. W. Duijvestijn, Simple perfect squared squares and 2×1 squared rectangles of orders 21 and 24, J. Combin. Theory Ser. B 59 (1993), no. 1, 26–34. MR 1234380, https://doi.org/10.1006/jctb.1993.1051
  • [8] Adrianus Johannes Wilhelmus Duijvestijn, Electronic computation of squared rectangles, Thesis, Technische Wetenschap aan de Technische Hogeschool te Eindhoven, Eindhoven, 1962. MR 0144492
  • [9] -, Electronic computation of squared rectangles, Philips Research Reports 17 (1962), 523-612.
  • [10] -, Algorithmic calculation of the order of the automorphism group of a graph, Memorandum 221, Twente University of Technology, The Netherlands, 1978.
  • [11] -, A lowest order simple perfect $ 2 \times 1$ squared rectangle, J. Combin. Theory Ser. B 26 (1978), 372-374.
  • [12] A. J. W. Duijvestijn, Simple perfect squared square of lowest order, J. Combin. Theory Ser. B 25 (1978), no. 2, 240–243. MR 511994, https://doi.org/10.1016/0095-8956(78)90041-2
  • [13] P. J. Federico, 1978, private communication.
  • [14] P. J. Federico, Squaring rectangles and squares, Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) Academic Press, New York-London, 1979, pp. 173–196. A historical review with annotated bibliography. MR 538045
  • [15] W. T. Tutte, A theory of 3-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 441–455. MR 0140094
  • [16] J. C. Wilson, A method for finding simple perfect squared squarings, Ph.D. thesis, University of Waterloo, 1967.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 05B99

Retrieve articles in all journals with MSC: 05B99


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1208220-9
Keywords: Graph theory, squared squares, $ 2 \times 1$ squared rectangles
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society