Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the spline collocation method for the single-layer heat operator equation


Authors: Martti Hamina and Jukka Saranen
Journal: Math. Comp. 62 (1994), 41-64
MSC: Primary 65N38; Secondary 65R20
DOI: https://doi.org/10.1090/S0025-5718-1994-1208222-2
MathSciNet review: 1208222
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a boundary element collocation method for the heat equation. As trial functions we use the tensor products of continuous piecewise linear splines with collocation at the nodal points. Convergence and stability is proved in the case where the spatial domain is a disc. Moreover, practical implementation is discussed in some detail. Numerical experiments confirm our results.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, U.S. Government Printing Office, Washington, DC, 1971. MR 0167642 (29:4914)
  • [2] D. N. Arnold and J. Saranen, On the asymptotic convergence of spline collocation methods for partial differential equations, SIAM J. Numer. Anal. 21 (1984), 459-472. MR 744168 (86g:65221)
  • [3] D. N. Arnold and W. L. Wendland, On the asymptotic convergence of collocation methods, Math. Comp. 41 (1983), 349-381. MR 717691 (85h:65254)
  • [4] I. Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972, pp. 3-359. MR 0421106 (54:9111)
  • [5] A. Bamberger and Duong T. Ha, Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I), Math. Methods Appl. Sci. 8 (1986), 405-435. MR 859833 (87m:76048)
  • [6] -, Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide (II), Math. Methods Appl. Sci. 8 (1986), 598-608. MR 870995 (88b:76050)
  • [7] M. Costabel, Boundary integral operators for the heat equation, Integral Equations Operator Theory 13(4) (1990), 498-552. MR 1058085 (91j:35119)
  • [8] M. Costabel, K. Onishi, and W. Wendland, A boundary element collocation method for the Neumann problem of the heat equation, Inverse and Ill-Posed Problems (H. W. Engl and C. W. Groetsch, eds.), Academic Press, New York, 1987, pp. 369-384. MR 1020324 (90k:65177)
  • [9] J. Elschner and G. Schmidt, On spline interpolation in periodic Sobolev spaces, Preprint 01/83, Dept. Math. Akademie der Wissenschaften der DDR, Berlin, 1985.
  • [10] A. Friedman, Partial differential equations of parabolic type, Robert E. Krieger Publishing Co., Malabar, FL, 1983.
  • [11] M. Hamina and J. Saranen, On the collocation approximation for the single layer heat operator equation, Z. Angew. Math. Mech. 71 (1991), 629-631. MR 1130407
  • [12] G. C. Hsiao, P. Kopp, and W. L. Wendland, A Galerkin collocation method for some integral equations of the first kind, Computing 25 (1980), 89-130. MR 620387 (83e:65210)
  • [13] -, Some applications of a Galerkin-collocation method for boundary integral equations of the first kind, Math. Methods Appl. Sci. 6 (1984), 280-325. MR 751746 (86h:65178)
  • [14] G. C. Hsiao and J. Saranen, Coercivity of the single layer heat operator, Technical Report 89-2, Department of Mathematical Sciences, University of Delaware, 1989.
  • [15] -, Boundary integral solution of some heat conduction problems, Proc. Internat. Conf. on Integral Equations and Inverse Problems, Varna, September 18-23, 1989.
  • [16] -, Boundary integral solution of the two-dimensional heat equation, Math. Methods Appl. Sci. 16 (1993), 87-114. MR 1200157 (94a:35056)
  • [17] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
  • [18] -, Non-homogeneous boundary value problems and applications II, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
  • [19] J. P. Noon, The single layer heat potential and Galerkin boundary element methods for the heat equation, Ph.D. Thesis, University of Maryland, 1988.
  • [20] K. Onishi, Convergence in the boundary element method for the heat equation, TRU Math. 17 (1981), 213-225. MR 648929 (83a:65088)
  • [21] H. G. L. Pina and J. L. M. Fernandes, Applications in transient heat conduction, Topics in Boundary Element Research 1 (C. A. Brebbia, ed.), Springer-Verlag, New York, 1972, pp. 41-58. MR 769118
  • [22] W. Pogorzelski, Integral equations and their applications, Pergamon Press, Oxford, 1966. MR 0201934 (34:1811)
  • [23] J. Saranen, The modified quadrature method for logarithmic-kernel integral equations on closed curves, J. Integral Equations Appl. 3 (1991), 575-600. MR 1150408 (93b:65211)
  • [24] J. Saranen and I. H. Sloan, Quadrature methods for logarithmic-kernel integral equations on closed curves, IMA J. Numer. Anal. 12 (1992), 167-187. MR 1164579 (93g:65169)
  • [25] F. Sgallari, A weak formulation of boundary integral equations for time dependent problems, Appl. Math. Modelling 9 (1985), 295-301. MR 801045 (86h:65146)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N38, 65R20

Retrieve articles in all journals with MSC: 65N38, 65R20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1208222-2
Keywords: Heat equation, collocation, boundary elements
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society