Maximum principle on the entropy and second-order kinetic schemes

Authors:
Brahim Khobalatte and Benoît Perthame

Journal:
Math. Comp. **62** (1994), 119-131

MSC:
Primary 65M06; Secondary 35L65, 76M25, 76N15

MathSciNet review:
1208223

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider kinetic schemes for the multidimensional inviscid gas dynamics equations (compressible Euler equations). We prove that the discrete maximum principle holds for the specific entropy. This fixes the choice of the equilibrium functions necessary for kinetic schemes. We use this property to perform a second-order oscillation-free scheme, where only one slope limitation (for three conserved quantities in 1D) is necessary. Numerical results exhibit stability and strong convergence of the scheme.

**[1]**S. Deshpande,*A second order accurate, kinetic theory based, method for inviscid compressible flows*, NASA Langley Technical Paper no. 2613, 1986.**[2]**Ami Harten, Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy,*Uniformly high-order accurate essentially nonoscillatory schemes. III*, J. Comput. Phys.**71**(1987), no. 2, 231–303. MR**897244**, 10.1016/0021-9991(87)90031-3**[3]**Peter D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR**0350216****[4]**P.-L. Lions, B. Perthame, and E. Tadmor,*Kinetic formulation of the isentropic gas dynamics and 𝑝-systems*, Comm. Math. Phys.**163**(1994), no. 2, 415–431. MR**1284790****[5]**Stanley Osher,*Riemann solvers, the entropy condition, and difference approximations*, SIAM J. Numer. Anal.**21**(1984), no. 2, 217–235. MR**736327**, 10.1137/0721016**[6]**B. Perthame,*Boltzmann type schemes for gas dynamics and the entropy property*, SIAM J. Numer. Anal.**27**(1990), no. 6, 1405–1421 (English, with French summary). MR**1080328**, 10.1137/0727081**[7]**B. Perthame,*Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions*, SIAM J. Numer. Anal.**29**(1992), no. 1, 1–19 (English, with French summary). MR**1149081**, 10.1137/0729001**[8]**B. Perthame and Y. Qiu,*A new variant of Van Leer's method for multidimensional systems of conservation laws*, INRIA report no. 1562.**[9]**Chi-Wang Shu and Stanley Osher,*Efficient implementation of essentially nonoscillatory shock-capturing schemes. II*, J. Comput. Phys.**83**(1989), no. 1, 32–78. MR**1010162**, 10.1016/0021-9991(89)90222-2**[10]**Eitan Tadmor,*A minimum entropy principle in the gas dynamics equations*, Appl. Numer. Math.**2**(1986), no. 3-5, 211–219. MR**863987**, 10.1016/0168-9274(86)90029-2**[11]**Eitan Tadmor,*The numerical viscosity of entropy stable schemes for systems of conservation laws. I*, Math. Comp.**49**(1987), no. 179, 91–103. MR**890255**, 10.1090/S0025-5718-1987-0890255-3**[12]**B. Van Leer,*Towards the ultimate conservative difference scheme*. V,*A second order sequel of Godunov's method*, J. Comput. Phys.**32**(1979), 101-136.**[13]**Thomas W. Roberts,*The behavior of flux difference splitting schemes near slowly moving shock waves*, J. Comput. Phys.**90**(1990), no. 1, 141–160. MR**1070474**, 10.1016/0021-9991(90)90200-K**[14]**B. Einfeldt, C.-D. Munz, P. L. Roe, and B. Sjögreen,*On Godunov-type methods near low densities*, J. Comput. Phys.**92**(1991), no. 2, 273–295. MR**1094256**, 10.1016/0021-9991(91)90211-3

Retrieve articles in *Mathematics of Computation*
with MSC:
65M06,
35L65,
76M25,
76N15

Retrieve articles in all journals with MSC: 65M06, 35L65, 76M25, 76N15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1208223-4

Keywords:
Compressible Euler equations,
upwind schemes,
kinetic schemes,
entropy property,
second-order schemes

Article copyright:
© Copyright 1994
American Mathematical Society