Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On unit groups and class groups of quartic fields of signature $ (2,1)$


Authors: J. Buchmann, M. Pohst and J. Graf von Schmettow
Journal: Math. Comp. 62 (1994), 387-390
MSC: Primary 11Y40; Secondary 11R27, 11R29
DOI: https://doi.org/10.1090/S0025-5718-1994-1208837-1
MathSciNet review: 1208837
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is the third and last paper of a series, now completing the description of the unit group and class group of all quartic number fields F of discriminant $ {d_F}$ with $ \vert{d_F}\vert < {10^6}$.


References [Enhancements On Off] (What's this?)

  • [1] J. Buchmann, A generalization of Voronoi's unit algorithm. I, II, J. Number Theory 20 (1985), 177-209. MR 790781 (86g:11062a)
  • [2] J. Buchmann, D. Ford, and M. Pohst, Enumeration of quartic fields of small discriminant, Math. Comp. 60 (1993), 873-879. MR 1176706 (94a:11164)
  • [3] J. Buchmann, M. Pohst, and J. v. Schmettow, On the computation of unit groups and class groups of totally real quartic fields, Math. Comp. 53 (1989), 387-397. MR 970698 (90e:11192)
  • [4] H. Cohen and J. Martinet, Class groups of number fields: Numerical heuristics, Math. Comp. 48 (1987), 123-137. MR 866103 (88e:11112)
  • [5] M. Pohst and J. Graf v. Schmettow, On the computation of unit groups and class groups of totally complex quartic fields, Math. Comp. 60 (1993), 793-800. MR 1164125 (93h:11142)
  • [6] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Cambridge Univ. Press, New York, 1989. MR 1033013 (92b:11074)
  • [7] J. Graf v. Schmettow, KANT--a tool for computations in algebraic number fields, Computational Number Theory (A. Pethö, M. Pohst, H. Williams, and H. G. Zimmer, eds.), de Gruyter, Berlin, 1991, pp. 321-330. MR 1151875 (92m:11151)
  • [8] -, Beiträge zur Klassengruppenberechnung, Dissertation, Düsseldorf, 1991.
  • [9] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), 367-380. MR 604833 (83g:12008)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R27, 11R29

Retrieve articles in all journals with MSC: 11Y40, 11R27, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1208837-1
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society