Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 62 (1994), 431-443
DOI: https://doi.org/10.1090/S0025-5718-94-99734-2
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 319 (1985). MR 783216 (87a:05023)
  • [2] W. B. Jones and W. J. Thron, Continued fractions: Analytic theory and applications, Addison-Wesley, Reading, Mass., 1980. MR 595864 (82c:30001)
  • [3] O. Perron, Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, Teubner, Stuttgart, 1954. MR 0064172 (16:239e)
  • [4] O. Perron, Die Lehre von den Kettenbrüchen, Band II: Analytisch-funktionentheoretische Kettenbrüche, Teubner, Stuttgart, 1957. MR 0085349 (19:25c)
  • [5] H. S. Wall, Analytic theory of continued fractions, Van Nostrand, New York, 1948. MR 0025596 (10:32d)
  • [1] C. Brezinski, A bibliography on continued fractions, Padé approximation, sequence transformation and related subjects, Prensas Universitarias, Zaragoza, 1991. MR 1148890 (92j:00011)
  • [1] C. T. H. Baker, The numerical treatment of integral equations, Clarendon Press, Oxford, 1977. MR 0467215 (57:7079)
  • [2] F. N. Fritsch, Review 3, Math. Comp. 50 (1988), 346-348.
  • [3] W. Gautschi, Review 6, Math. Comp. 52 (1989), 253.
  • [1] M. Minkoff, Review 36, Math. Comp. 47 (1986), 749.
  • [1] A. S. Anema, Primitive Phythagorean triangles with their generators and with their perimeters up to 119,992, manuscript in the UMT file, MTAC 5 (1951), UMT 111, p. 28.
  • [2] Andrew Bremner, Pythagorean triangles and a quartic surface, J. Reine Angew. Math. 318 (1980), 120-125. MR 579387 (82a:10018)
  • [3] Leonard E. Dickson, History of the theory of numbers, Vol. II, Chelsea, New York, 1956.
  • [4] Martin Gardner, Simple proofs of the Pythagorean theorem and sundry other matters, Mathematical Games, Scientific American, October 1964, Volume 211, #4, pp. 118-126.
  • [5] Richard K. Guy, Unsolved problems in number theory, vol. 1, Springer-Verlag, New York, 1981. MR 656313 (83k:10002)
  • [6] Thomas Heath, A history of Greek mathematics, Volume II, from Aristarchus to Diophantus, Dover, New York, 1981. MR 654680 (84h:01002b)
  • [7] D. L. MacKay, Solution to Problem E327[1938, 248] proposed by Philip Franklin, Amer. Math. Monthly 46 (1939), 169-170.
  • [8] J. P. McCarthy, A Lewis Carroll problem, Mathematical Notes 1196, Math. Gaz. 20 (1936), 152-153.
  • [9] Francis L. Miksa, Table of primitive Pythagorean triangles, arranged according to increasing areas, 5 vol. ms. comprising a total of 27+980 pp. deposited in UMT file; see Math. Comp. 23 (1969), Review 69, p. 888.
  • [10] W. P. Whitlock, Jr., Rational right triangles with equal area, Scripta Math. 9 (1943), 155-161; ibid., pp. 265-268. MR 0009772 (5:199f)
  • [1] Richard K. Guy, Unsolved problems in number theory, vol. 1, Springer-Verlag, New York, 1981. MR 656313 (83k:10002)
  • [2] Maurice Kraitchik, On certain rational cuboids, Scripta Math. 11 (1945), 317-326. MR 0016374 (8:6e)
  • [3] -, Théorie des nombres, Tome 3, Analyse Diophantine et Applications aux Cuboides Rationnels, Gauthier-Villars, Paris, 1947, pp. 122-131.
  • [4] -, Sur les cuboides rationnels, Proc. Internat. Congr. Math. 1954, vol. 2, Amsterdam, 1954, pp. 33-34.
  • [5] Jean LaGrange, Sur le cuboide entier, Seminaire DeLange-Pisot-Poitou (Groupe d'étude de Théorie des Nombres), 17ème année, 1975/76, #G1, 5 pages. MR 0453630 (56:11892)
  • [6] Mohan Lal and W. J. Blundon, Solutions of the Diophantine equations $ {x^2} + {y^2} = {1^2}, {y^2} + {z^2} = {m^2}, {z^2} + {x^2} = {n^2}$, Math. Comp. 20 (1966), 144-147. MR 0186623 (32:4082)
  • [7] John Leech, The location of four squares in an arithmetic progression, with some applications, Computers in Number Theory (A. Oliver, L. Aitkin, and Brian J. Birch, eds.), Academic Press, London and New York, 1971, pp. 83-98. MR 0316366 (47:4913)
  • [8] -, Five tables relating to rational cuboids, 46 sheets of computer output, UMT file, University of Stirling, Stirling, Scotland, January 1977; see Math. Comp. 32 (1978), 657-659.
  • [9] -, Table Errata 554--M. Kraitchik, Théorie des nombres, Tome 3, Analyse Diophantine et Applications aux Cuboides Rationnels, Gauthier-Villars, Paris, 1947, pp. 122-131; 555--M. Kraitchik, Sur les cuboides rationnels, Proc. Internat. Congr. Math., 1954, vol. 2, Amsterdam, 1954, pp. 33-34; see Math. Comp. 32 (1978), 661.
  • [10] Daniel Shanks, Corrigenda, M. Lal and W. J. Blundon, Solutions of the Diophantine Equations $ {x^2} + {y^2} = {l^2}, {y^2} + {z^2} = {m^2}, {z^2} + {x^2} = {n^2}$, Math. Comp. 20 (1966), 144-147; see Math. Comp. 23 (1969), 219. MR 0400637 (53:4468)
  • [11] William Gideon Spohn, Jr., Table of integral cuboids and their generators, 4pp+45pp reduced-size computer printout, UMT file, Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, 1978; see Math. Comp. 33 (1979), Review 4, 428-429.
  • [12] -, Table Errata 558--John Leech, Five tables related to rational cuboids, UMT 12, Math. Comp. 32 (1978), 657-659; see Math. Comp. 33 (1979), 430.
  • [1] Maurice Kraitchik, On certain rational cuboids, Scripta Math. 11 (1945), 317-326. MR 0016374 (8:6e)
  • [2] -, Théorie des nombres, Tome 3, Analyse Diophantine et Applications aux Cuboides Rationnels, Gauthier-Villars, Paris, 1947.
  • [3] -, Sur les cuboides rationnels, Proc. Internat. Congr. Math., 1954, vol. 2, Amsterdam, 1954, pp. 33-34.
  • [4] John Leech, Table Errata 554--M. Kraitchik, Théorie des nombres, Tome 3, Analyse Diophantine et Applications aux Cuboides Rationnels, Gauthier-Villars, Paris, 1947, pp. 122-131; 555--M. Kraitchik, Sur les cuboides rationnels, Proc. Internat. Congr. Math., 1954, vol. 2, Amsterdam, 1954, pp. 33-34; see Math. Comp. 32 (1978), 661.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-94-99734-2
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society