Polynomial approximations of functions with endpoint singularities and product integration formulas

Authors:
Giuseppe Mastroianni and Giovanni Monegato

Journal:
Math. Comp. **62** (1994), 725-738

MSC:
Primary 65D32; Secondary 41A10

DOI:
https://doi.org/10.1090/S0025-5718-1994-1201069-2

MathSciNet review:
1201069

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several problems of mathematical physics lead to Fredholm integral equations of the second kind where the kernels are either weakly or strongly singular and the known terms are smooth. These equations have solutions which are smooth in the whole interval of integration except at the endpoints where they have mild singularities. In this paper we derive new pointwise and uniform polynomial approximation error estimates for that type of function. These estimates are then used to obtain bounds for the remainder terms of interpolatory product rules, based on the zeros of classical Jacobi orthogonal polynomials, that have been proposed for the discretization of integrals of the form

**[1]**G. A. Chandler and I. G. Graham,*Product integration-collocation methods for noncompact integral operator equations*, Math. Comp.**50**(1988), no. 181, 125–138. MR**917821**, https://doi.org/10.1090/S0025-5718-1988-0917821-1**[2]**Giuliana Criscuolo, Giuseppe Mastroianni, and Giovanni Monegato,*Convergence properties of a class of product formulas for weakly singular integral equations*, Math. Comp.**55**(1990), no. 191, 213–230. MR**1023045**, https://doi.org/10.1090/S0025-5718-1990-1023045-1**[3]**Giuliana Criscuolo, Giuseppe Mastroianni, and Péter Vértesi,*Pointwise simultaneous convergence of extended Lagrange interpolation with additional knots*, Math. Comp.**59**(1992), no. 200, 515–531. MR**1134723**, https://doi.org/10.1090/S0025-5718-1992-1134723-X**[4]**R. Dahlhaus,*Pointwise approximation by algebraic polynomials*, J. Approx. Theory**57**(1989), no. 3, 274–277. MR**999862**, https://doi.org/10.1016/0021-9045(89)90042-7**[5]**Z. Ditzian and V. Totik,*Moduli of smoothness*, Springer Series in Computational Mathematics, vol. 9, Springer-Verlag, New York, 1987. MR**914149****[6]**R. V. Dudučava,*Convolution integral equations with discontinuous presymbols, singular integral equations with fixed singularities, and their applications to problems in mechanics*, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR**60**(1979), 136 (Russian, with English summary). MR**552638**

Roland Duduchava,*Integral equations in convolution with discontinuous presymbols, singular integral equations with fixed singularities, and their applications to some problems of mechanics*, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979. With German, French and Russian summaries; Teubner-Texte zur Mathematik. [Teubner Texts on Mathematics]. MR**571890****[7]**Johannes Elschner,*On spline approximation for a class of noncompact integral equations*, Report MATH, vol. 88, Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin, 1988. With German and Russian summaries. MR**996632****[8]**Ivan G. Graham,*Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels*, J. Integral Equations**4**(1982), no. 1, 1–30. MR**640534****[9]**Giuseppe Mastroianni,*Uniform convergence of derivatives of Lagrange interpolation*, J. Comput. Appl. Math.**43**(1992), no. 1-2, 37–51. Orthogonal polynomials and numerical methods. MR**1193293**, https://doi.org/10.1016/0377-0427(92)90258-Y**[10]**G. Mastroianni and G. Monegato,*Nyström interpolants based on the zeros of Legendre polynomials for a noncompact integral operator equation*, IMA J. Numer. Anal.**14**(1994), no. 1, 81–95. MR**1254108**, https://doi.org/10.1093/imanum/14.1.81**[11]**G. Mastroianni and J. Szabados,*Polynomial approximation of analytic functions with singularities*, Approximation interpolation and summability (Ramat Aviv, 1990/Ramat Gan, 1990) Israel Math. Conf. Proc., vol. 4, Bar-Ilan Univ., Ramat Gan, 1991, pp. 171–181. MR**1212322****[12]**G. Monegato and V. Colombo,*Product integration for the linear transport equation in slab geometry*, Numer. Math.**52**(1988), no. 2, 219–240. MR**923711**, https://doi.org/10.1007/BF01398690**[13]**G. Monegato and S. Prössdorf,*On the numerical treatment of an integral equation arising from a cruciform crack problem*, Math. Methods Appl. Sci.**12**(1990), no. 6, 489–502. MR**1058152**, https://doi.org/10.1002/mma.1670120604**[14]**Giovanni Monegato,*Product integration for one-dimensional integral equations of Fredholm type*, Trends in functional analysis and approximation theory (Acquafredda di Maratea, 1989) Univ. Modena Reggio Emilia, Modena, 1991, pp. 73–86. MR**1136586****[15]**Paul G. Nevai,*Orthogonal polynomials*, Mem. Amer. Math. Soc.**18**(1979), no. 213, v+185. MR**519926**, https://doi.org/10.1090/memo/0213**[16]**Paul Nevai,*Mean convergence of Lagrange interpolation. III*, Trans. Amer. Math. Soc.**282**(1984), no. 2, 669–698. MR**732113**, https://doi.org/10.1090/S0002-9947-1984-0732113-4**[17]**R. Piessens,*Modified Clenshaw-Curtis integration and applications to numerical computation of integral transforms*, Numerical integration (Halifax, N.S., 1986) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 203, Reidel, Dordrecht, 1987, pp. 35–51. MR**907110****[18]**J. Pitkäranta,*On the differential properties of solutions to Fredholm equations with weakly singular kernels*, J. Inst. Math. Appl.**24**(1979), no. 2, 109–119. MR**544428****[19]**Blagovest Sendov and Vasil A. Popov,*The averaged moduli of smoothness*, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1988. Applications in numerical methods and approximation; A Wiley-Interscience Publication. MR**995672****[20]**A. F. Timan,*Theory of approximation of functions of a real variable*, Translated from the Russian by J. Berry. English translation edited and editorial preface by J. Cossar. International Series of Monographs in Pure and Applied Mathematics, Vol. 34, A Pergamon Press Book. The Macmillan Co., New York, 1963. MR**0192238****[21]**V. Totik,*Polynomial approximation with locally geometric rate*, Approximation theory (Kecskemét, 1990) Colloq. Math. Soc. János Bolyai, vol. 58, North-Holland, Amsterdam, 1991, pp. 663–671. MR**1211467****[22]**G. Vainikko and A. Pedas,*The properties of solutions of weakly singular integral equations*, J. Austral. Math. Soc. Ser. B**22**(1980/81), no. 4, 419–430. MR**626933**, https://doi.org/10.1017/S0334270000002769

Retrieve articles in *Mathematics of Computation*
with MSC:
65D32,
41A10

Retrieve articles in all journals with MSC: 65D32, 41A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1201069-2

Article copyright:
© Copyright 1994
American Mathematical Society