Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Divergence of continued fractions related to hypergeometric series


Author: Lisa Lorentzen
Journal: Math. Comp. 62 (1994), 671-686
MSC: Primary 40A15; Secondary 33C05
DOI: https://doi.org/10.1090/S0025-5718-1994-1203736-3
MathSciNet review: 1203736
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K({a_n}/{b_n})$ be a limit periodic continued fraction of elliptic type; i.e., $ {a_n} \to a$ and $ {b_n} \to b$, where $ a/(b + w)$ is an elliptic linear fractional transformation of w. We show that if $ \sum {\vert{a_n} - a\vert < \infty } $ and $ \sum {\vert{b_n} - b\vert < \infty } $, then $ K({a_n}/{b_n})$ diverges. This generalizes the well-known Stern-Stolz Theorem. The Gauss continued fraction (related to hypergeometric functions) is used as an example. We also give an example where $ {a_n} - a = \mathcal{O}({n^{ - 1}})$ and $ {b_n} = b = 1$ and $ K({a_n}/{b_n})$ converges. The divergence result is also generalized further.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964. MR 0176141 (31:416)
  • [2] J. Gill, Infinite compositions of Möbius transformations, Trans. Amer. Math. Soc. 176 (1973), 479-487. MR 0316690 (47:5237)
  • [3] M. E. H. Ismail, D. R. Masson, and E. B. Saff, A minimal solution approach to polynomial asymptotics, Orthogonal Polynomials and their Applications (C. Brezinski, L. Gori, and A. Ronveaux, eds.), J. C. Baltzer AG, Basel, 1991, pp. 299-303. MR 1270249
  • [4] L. Jacobsen, Convergence of limit k-periodic continued fractions $ K({a_n}/{b_n})$, and of subsequences of their tails, Proc. London Math. Soc. 51 (1985), 563-576. MR 805722 (87c:40003)
  • [5] -, Nearness of continued fractions, Math. Scand. 60 (1987), 129-147. MR 914330 (88k:40002)
  • [6] L. Jacobsen and D. Masson, On the convergence of limit periodic continued fractions $ K({a_n}/1)$, where $ {a_n} \to - \frac{1}{4}$. Part 3, Constr. Approx. 6 (1990), 363-374. MR 1067195 (91k:40001)
  • [7] L. Jacobsen and H. Waadeland, Some useful formulas involving tails of continued fractions, Lecture Notes in Math., vol. 932, Springer-Verlag, Berlin, 1981, pp. 99-105. MR 690457 (84c:40004)
  • [8] W. B. Jones and W. J. Thron, Continued fractions. Analytic theory and applications, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley, Reading, MA, 1980. MR 595864 (82c:30001)
  • [9] K. Knopp, Theorie und Anwendung der unendlichen Reihen, Grundlehren Math. Wiss., Bd. 2, Springer-Verlag, Berlin, 1947. MR 0028430 (10:446a)
  • [10] L. Lorentzen, A note on separate convergence for continued fractions, J. Comput. Appl. Math. 47 (1993), 123-133. MR 1226367 (94g:40001)
  • [11] O. Perron, Die Lehre von den Kettenbrüchen, Band 2, Teubner, Stuttgart, 1957. MR 0085349 (19:25c)
  • [12] R. Spigler and M. Vianello, Asymptotic representation for a class of orthogonal polynomials via discrete Liouville-Green approximation, J. Approx. Theory (to appear).
  • [13] M. A. Stern, Lehrbuch der algebraischen Analysis, Leipzig, 1860.
  • [14] O. Stolz, Vorlesungen über allgemeine Arithmetik, Teubner, Leipzig, 1886.
  • [15] W. Van Assche, Asymptotics for orthogonal polynomials and three-term recurrences, Orthogonal Polynomials: Theory and Practice (Paul Nevai, ed.), Kluwer, Dordrecht, 1990, pp. 435-462. MR 1100305 (92k:42038)
  • [16] E. B. Van Vleck, On the convergence of continued fractions with complex elements, Trans. Amer. Math. Soc. 2 (1901), 215-233. MR 1500565
  • [17] H. Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984), 57-64. MR 722415 (85f:40003)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 40A15, 33C05

Retrieve articles in all journals with MSC: 40A15, 33C05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1203736-3
Keywords: Hypergeometric series, divergence of continued fractions
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society