Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Explicit inversive congruential pseudorandom numbers with power of two modulus


Authors: Jürgen Eichenauer-Herrmann and Katja Ickstadt
Journal: Math. Comp. 62 (1994), 787-797
MSC: Primary 11K45; Secondary 11K38, 65C10
DOI: https://doi.org/10.1090/S0025-5718-1994-1212266-4
MathSciNet review: 1212266
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit version of the inversive congruential method with power of two modulus for generating uniform pseudorandom numbers is introduced. Statistical independence properties of the generated sequences are studied by means of the serial test. The method of proof relies on a detailed analysis of certain exponential sums.


References [Enhancements On Off] (What's this?)

  • [1] J. Eichenauer and J. Lehn, A non-linear congruential pseudorandom number generator, Statist. Papers 27 (1986), 315-326. MR 877295 (88i:65014)
  • [2] J. Eichenauer, J. Lehn, and A. Topuzoglu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988), 757-759. MR 958641 (89i:65007)
  • [3] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers, Z. Angew. Math. Mech. 73 (1993), T644-T647. MR 1237851
  • [4] -, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176.
  • [5] -, Inversive congruential pseudorandom numbers avoid the planes, Math. Comp. 56 (1991), 297-301. MR 1052092 (91k:65021)
  • [6] -, On the autocorrelation structure of inversive congruential pseudorandom number sequences, Statist. Papers 33 (1992), 261-268. MR 1186171 (94b:65016)
  • [7] -, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993), 375-384. MR 1159168 (93d:65011)
  • [8] J. Eichenauer-Herrmann, H. Grothe, H. Niederreiter, and A. Topuzoglu, On the lattice structure of a nonlinear generator with modulus $ {2^\alpha }$, J. Comput. Appl. Math. 31 (1990), 81-85. MR 1068151 (91j:65012)
  • [9] J. Eichenauer-Herrmann and H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers with power of two modulus, Math. Comp. 58 (1992), 775-779. MR 1122066 (92i:65018)
  • [10] -, On the discrepancy of quadratic congruential pseudorandom numbers, J. Comput. Appl. Math. 34 (1991), 243-249. MR 1107870 (92c:65010)
  • [11] M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, Finite Fields, Coding Theory, and Advances in Communications and Computing (G. L. Mullen and P. J.-S. Shiue, eds.), Dekker, New York, 1992, pp. 75-80. MR 1199823 (94a:11117)
  • [12] J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961), 649-660. MR 0131885 (24:A1732)
  • [13] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983. MR 746963 (86c:11106)
  • [14] H. Niederreiter, The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989), 135-144. MR 971407 (90e:65008)
  • [15] -, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 55 (1990), 277-287. MR 1023766 (91e:65016)
  • [16] -, Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991), 323-345. MR 1118905 (92h:65010)
  • [17] -, Finite fields and their applications, Contributions to General Algebra, vol. 7, Teubner, Stuttgart, 1991, pp. 251-264. MR 1143089 (92j:11146)
  • [18] -, Nonlinear methods for pseudorandom number and vector generation, Simulation and Optimization (G. Pflug and U. Dieter, eds.), Lecture Notes in Econom. and Math. Systems, vol. 374, Springer, Berlin, 1992, pp. 145-153.
  • [19] -, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, PA, 1992. MR 1172997 (93h:65008)
  • [20] -, Finite fields, pseudorandom numbers, and quasirandom points, Finite Fields, Coding Theory, and Advances in Communications and Computing (G. L. Mullen and P. J.-S. Shiue, eds.), Dekker, New York, 1992, pp. 375-394. MR 1199844 (94a:11121)
  • [21] -, New methods for pseudorandom number and pseudorandom vector generation, Proc. 1992 Winter Simulation Conf. (Arlington, Va., 1992), IEEE Press, Piscataway, NJ, 1992, pp. 264-269.
  • [22] -, Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech. 73 (1993), T648-T652. MR 1237852

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11K45, 11K38, 65C10

Retrieve articles in all journals with MSC: 11K45, 11K38, 65C10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1212266-4
Keywords: Pseudorandom numbers, inversive congruential method, power of two modulus, discrepancy
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society