IMPROVED LOWER BOUNDS FOR THE DISCREPANCY OF INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS

JÜRGEN EICHENAUER-HERRMANN

Abstract. The inversive congruential method with prime modulus for generating uniform pseudorandom numbers is studied. Lower bounds for the discrepancy of k-tuples of successive pseudorandom numbers are established, which improve earlier results of Niederreiter. Moreover, the present proof is substantially simpler than the earlier one.

1. Introduction and main results

A particularly promising approach of generating uniform pseudorandom numbers in the interval [0, 1) is the inversive congruential method with prime modulus. A review of several nonlinear congruential methods is given in the survey articles [1, 5, 6] and in H. Niederreiter's excellent monograph [7].

Let p > 5 be a prime, and identify \(\mathbb{Z}_p \) = \{0, 1, \ldots, p - 1\} with the finite field of order p. For \(z \in \mathbb{Z}_p^* := \mathbb{Z}_p \setminus \{0\} \) let \(\overline{z} \) denote the multiplicative inverse of \(z \) modulo p, and put \(\overline{0} := 0 \). For integers \(a, c \in \mathbb{Z}_p^* \) an inversive congruential sequence \((y_n)_{n \geq 0} \) of elements of \(\mathbb{Z}_p \) is defined by
\[
y_{n+1} \equiv ac^2\overline{y}_n + c \pmod{p}, \quad n \geq 0.
\]

A sequence \((x_n)_{n \geq 0} \) of inversive congruential pseudorandom numbers in the interval [0, 1) is obtained by \(x_n = y_n/p \) for \(n \geq 0 \). Observe that these sequences are always purely periodic. In [2], sequences having maximal period length p are characterized. In particular, it follows from [2, Theorem 2] that this property depends only on \(a \in \mathbb{Z}_p^* \), but not on the specific value of \(c \in \mathbb{Z}_p^* \). Let \(M_p^* \) be the set of all \(a \in \mathbb{Z}_p^* \) which belong to inversive congruential sequences with maximal period length p.

For assessing statistical independence properties the discrepancy of the k-tuples
\[
x_n = (x_n, x_{n+1}, \ldots, x_{n+k-1}) \in [0, 1)^k, \quad 0 \leq n < p,
\]
of successive inversive congruential pseudorandom numbers can be used, which is defined by
\[
D_p^{(k)} = \sup_{J} |F_p(J) - V(J)|,
\]

Received by the editor December 14, 1992.
1991 Mathematics Subject Classification. Primary 65C10; Secondary 11K45.
Key words and phrases. Uniform pseudorandom numbers, inversive congruential method, prime modulus, discrepancy.
where the supremum is extended over all subintervals \(J \) of \([0, 1)^k\), \(F_p(J) \) is \(p^{-1} \) times the number of points among \(x_0, x_1, \ldots, x_{p-1} \) falling into \(J \), and \(V(J) \) denotes the \(k \)-dimensional volume of \(J \). The following two theorems from [4] provide lower bounds for \(D_p^{(k)} \). Let \(\varphi \) be Euler's totient function and \(\omega(m) \) be the number of different prime factors of a positive integer \(m \). Let

\[
t(p) = \left(1 - \frac{1}{p} (p^{1/2} + 2) 2^{\omega(p-1)} \right)^{1/2}
\]

and

\[
A_p(t) = \frac{\left(1 - t^2 \right) p - (p^{1/2} + 2) 2^{\omega(p-1)}}{(4 - t^2) p + 4 p^{1/2} + 1}
\]

for \(0 < t \leq t(p) \). Note that [2, Corollary 1] implies that an inversive congruential sequence has maximal period length \(p \) if \(z^2 - cz - ac^2 \) is a primitive polynomial over \(\mathbb{Z}_p \).

Theorem 1. There are at least \(\varphi(p+1) \) primitive polynomials \(z^2 - cz - ac^2 \) over \(\mathbb{Z}_p \) such that the discrepancy \(D_p^{(k)} \) for the corresponding inversive congruential generator satisfies

\[
D_p^{(k)} > \frac{1}{2(\pi + 2)} (p^{-1/2} - 2 p^{-3/5})^2
\]

for all dimensions \(k \geq 2 \).

Theorem 2. Let \(0 < t \leq t(p) \). Then there are more than \(A_p(t) \varphi(p^2 - 1)/2 \) primitive polynomials \(z^2 - cz - ac^2 \) over \(\mathbb{Z}_p \) such that the discrepancy \(D_p^{(k)} \) for the corresponding inversive congruential generator satisfies

\[
D_p^{(k)} > \frac{t}{2(\pi + 2)} p^{-1/2}
\]

for all dimensions \(k \geq 2 \).

In the present paper the following improved lower bounds for \(D_p^{(k)} \) are established. These results have two main advantages. They apply to all inversive congruential sequences with maximal period length \(p \) and not only to those belonging to a primitive polynomial, and they provide information on the subclasses of inversive congruential generators which correspond to the different values of \(a \in \mathbb{M}_p^* \). Moreover, the proof of these results, which is given in the third section, is much simpler than the one of Theorems 1 and 2 in [4]. Let

\[
\hat{i}(p) = \left(\frac{p - 3}{p - 1} \right)^{1/2}
\]

and

\[
\hat{A}_p(t) = \frac{(1 - t^2) p - 2 p (p - 1)^{-1}}{(4 - t^2) p + 4 p^{1/2} + 1}
\]

for \(0 < t \leq \hat{i}(p) \).

Result 1. Let \(a \in \mathbb{M}_p^* \). Then there exists a \(c \in \mathbb{Z}_p^* \) such that the discrepancy \(D_p^{(k)} \) for the corresponding inversive congruential generator satisfies

\[
D_p^{(k)} \geq \frac{\hat{i}(p)}{2(\pi + 2)} p^{-1/2}
\]

for all dimensions \(k \geq 2 \).
Result 2. Let $0 < t \leq \tilde{t}(p)$ and $a \in M_p^*$. Then there are more than $\tilde{A}_p(t)(p - 1)$ values of $c \in Z_p^*$ such that the discrepancy $D_p^{(k)}$ for the corresponding inversive congruential generator satisfies

$$D_p^{(k)} \geq \frac{t}{2(\pi + 2)p^{1/2}},$$

for all dimensions $k \geq 2$.

2. Auxiliary results

First, some further notation is necessary. Let $e(t) = e^{2\pi it}$ for $t \in \mathbb{R}$ and $\chi(z) = e(z/p)$ for $z \in \mathbb{Z}$. For fixed $a \in \mathbb{Z}_p^*$ and $c \in \mathbb{Z}_p$, an exponential sum is defined by

$$S(c) = \sum_{y \in \mathbb{Z}_p} \chi(c(y + ay)).$$

Lemma 1. Let $a \in \mathbb{Z}_p^*$. Then

$$\sum_{c \in \mathbb{Z}_p^*} |S(c)|^2 \geq p(p - 3).$$

Proof. Easy calculations show that

$$\sum_{c \in \mathbb{Z}_p^*} |S(c)|^2 = \sum_{c \in \mathbb{Z}_p^*} \sum_{y, z \in \mathbb{Z}_p^*} \chi(c(y - z + a(y - z)))$$

$$= \sum_{y, z \in \mathbb{Z}_p^*} \sum_{c \in \mathbb{Z}_p^*} \chi(c(y - z + a(y - z)))$$

$$= p \cdot \# \{(y, z) \in \mathbb{Z}_p^* \times \mathbb{Z}_p^* | y - z + a(y - z) \equiv 0 \pmod{p} \}$$

$$\geq p(\# \{(y, z) \in \mathbb{Z}_p^* \times \mathbb{Z}_p^* | y - z(1 - a\bar{y}) \equiv 0 \pmod{p} \} + 1)$$

$$= p(\# \{(y, z) \in \mathbb{Z}_p^* \times \mathbb{Z}_p^* | y = z \text{ or } y \equiv a\bar{z} \pmod{p} \} + 1)$$

$$\geq p(2p - 3),$$

where the last inequality follows from the fact that there are at most two values of $z \in \mathbb{Z}_p^*$ with $z \equiv a\bar{z} \pmod{p}$. Since $S(0) = p$, one obtains at once

$$\sum_{c \in \mathbb{Z}_p^*} |S(c)|^2 \geq p(2p - 3) - p^2 = p(p - 3). \qed$$

Lemma 2. Let $0 < t \leq \tilde{t}(p)$ and $a \in \mathbb{Z}_p^*$. Then there are more than $\tilde{A}_p(t)(p - 1)$ values of $c \in \mathbb{Z}_p^*$ such that

$$|S(c)| \geq tp^{1/2}.$$
Theorem 5.45]) that \(|S(c)| \leq 2p^{1/2} + 1 \) for all \(c \in \mathbb{Z}_p^* \). Therefore, one obtains
\[
\sum_{c \in \mathbb{Z}_p^*} |S(c)|^2 < (1 - \tilde{A}_p(t))(p - 1)t^2p + \tilde{A}_p(t)(p - 1)(2p^{1/2} + 1)^2
\]
which is a contradiction to Lemma 1. \(\square \)

3. PROOF OF THE RESULTS

First, Lemma 1 in [4] is applied with \(N = p \), \(t_n = x_n \) for \(0 \leq n < p \), \(h = (1, 1, 0, \ldots, 0) \in \mathbb{Z}^k \), and hence \(m = 2 \). This yields
\[
D_p^{(k)} \geq \frac{1}{2(\pi + 2)p} \left| \sum_{n=0}^{p-1} \chi(x_n + x_{n+1}) \right| = \frac{1}{2(\pi + 2)p} \left| \sum_{n=0}^{p-1} \chi(y_n + ac^2\overline{y}_n) \right|.
\]
Since \((y_n)_{n \geq 0} \) has maximal period length \(p \), i.e., \(\{y_0, y_1, \ldots, y_{p-1}\} = \mathbb{Z}_p \),
\[
D_p^{(k)} \geq \frac{1}{2(\pi + 2)p} \left| \sum_{z \in \mathbb{Z}_p} \chi(z + ac^2\overline{z}) \right|.
\]
Now, the transformation \(z \equiv cy \pmod{p} \) yields
\[
D_p^{(k)} \geq \frac{1}{2(\pi + 2)p} \left| \sum_{y \in \mathbb{Z}_p} \chi(c(y + a\overline{y})) \right| = \frac{1}{2(\pi + 2)p} |S(c)|.
\]
Therefore, Result 2 follows at once from Lemma 2. Finally, Result 1 is obtained from Result 2 with \(t = \tilde{t}(p) \).

BIBLIOGRAPHY

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE DARMSTADT, SCHLOSSGARTENSTRASSE 7, D–64289 DARMSTADT, GERMANY