POLAR GENERATION OF RANDOM VARIATES WITH
THE τ-DISTRIBUTION

RALPH W. BAILEY

Abstract. The "polar" method of Box and Muller uses two independent uniform variates in order to generate two independent normal variates. It can be adapted so that two variates from Student's τ-distribution with parameter ν are generated, though the two variates are now not independent. An algorithm based on the polar method is exact, inexpensive, and valid for all $\nu > 0$.

Box and Muller's [1] polar method for generating random normal variates relies on two convenient properties of the normal distribution, which we may formulate as follows:

(i) Let $X \sim N(0, 1)$. Then X can be regarded as the real part of a complex random variable Z which has a radial distribution (the contours of the density function of Z form circles centered at the origin);

(ii) Write $Z = X + iY = Re^{i\theta}$. Then the distribution function F_R ($\equiv 1 - G_R$) of R is a simple algebraic expression, so simple that it is invertible; that is, given $G \equiv G_R(r)$, we can write down a closed expression for r in terms of G.

The aim of this article is to show that properties (i) and (ii) are shared by the Student t-distribution with parameter ν (the τ_ν-distribution) defined by the density

$$f_T(x) = B(\nu/2, 1/2)^{-1} \cdot \nu^{-1/2} \cdot (1 + x^2/\nu)^{-(\nu+1)/2}.$$\hspace{1cm}(1)

Thus, we are asserting that the τ_ν-distribution, like the normal, has a tractable radial parent. If T has the density (1), we shall write "$T \sim \tau_\nu$".

Many methods have been proposed for the generation of τ_ν-variates. The most important ones are described in Devroye [2, pp. 445-450], whose masterly survey we shall not attempt to emulate. The faster algorithms may require either a comparatively great programming effort, or the expensive recalculation of certain quantities required by the algorithm, whenever ν is changed. As Devroye notes, problems arise when ν is small and the departure from normality is greatest, particularly in the region $0 < \nu < 1$, where many of the algorithms fail to work at all.

So one would be interested in a theoretically simple and practically effective generator, valid for any $\nu > 0$. We now show how the polar method may be applied to the τ_ν-distribution to yield such an algorithm.

Received by the editor December 23, 1992 and, in revised form, May 12, 1993.

1991 Mathematics Subject Classification. Primary 65C10; Secondary 62E15.

©1994 American Mathematical Society
0025-5718/94 $1.00 + .25$ per page
Definition. Let \(Z = R e^{i\Theta} \) be a complex random variable such that

(i) \(R \) and \(\Theta \) are independently distributed;
(ii) \(\Theta \) is uniformly distributed on \([0, 2\pi)\);
(iii) the probability that \(R (= |Z|) \) is greater than \(r \) is

\[
GR(r) = (1 + r^2/\nu)^{-\nu/2}, \quad r > 0, \ \nu > 0.
\]

Then we shall say that \(Z \) has the radial \(t_\nu \)-distribution.

Theorem 1. If \(Z = X + Yi \) has the radial \(t_\nu \)-distribution, then the marginal distributions of \(X \) and \(Y \) are given by \(X \sim t_\nu \) and \(Y \sim t_\nu \). The variates \(X \) and \(Y \) are not independent.

Proof. By assumption, \(\Theta \) has density \(1/2\pi \), and \(R \) has, independently, the density \(f_R(r) = -dGR/dr = (r/\nu) \cdot (1 + r^2/\nu)^{-\nu/2-1} \). The transformation \(x = r \cos \Theta, \ y = r \sin \Theta \) (which has Jacobian \(r \)) shows that the joint density of \(X, Y \) is

\[
f_{X,Y}(x, y) = (2\pi)^{-1} \cdot (1 + (x^2 + y^2)/\nu)^{-\nu/2-1}.
\]

Now integrate out \(y \) (note that the integrand is an even function of \(y \) and let \(u = (1 + y^2/(\nu + x^2))^{-1} \), expressing the integral as a multiple of a beta integral) to confirm that the marginal distribution of \(f_X(x) \) has indeed the required form (1). The result for \(Y \) follows by symmetry.

The only complex radial distribution for which \(X \) and \(Y \) are independent with continuous marginal densities is (Mathai and Pederzoli [5, pp. 9-12]) the zero-mean, equal-variance, zero-covariance bivariate normal. Hence \(X \) and \(Y \) in Theorem 1 are not independent. \(\square \)

Theorem 1 leads to our main result, the polar method for generating \(t_\nu \)-variates:

Theorem 2. Let \(G, H \) be iid variates, uniformly distributed on \([0, 1]\). Let \(\Theta = 2\pi \cdot H \), let \(R = (\nu(G^{-2/\nu} - 1))^{1/2} \ (\nu > 0) \), let \(X = R \cos \Theta \), and let \(Y = R \sin \Theta \). Then \(X \sim t_\nu \) and \(Y \sim t_\nu \). The variates \(X \) and \(Y \) are not independent.

Proof. Let \(Z \) have the radial \(t_\nu \)-distribution. If we let \(G = G_R(R) \), where \(G_R \) is given by (2), then we know that \(G \) is uniformly distributed on \([0, 1]\). Conversely, if \(G \) is uniformly distributed on \([0, 1]\) and we take the inverse transformation \(R = (\nu(G^{-2/\nu} - 1))^{1/2} \), then we know that \(Z \equiv R \exp(2\pi i H) = Re^{i\Theta} \) has the radial \(t_\nu \)-distribution. Now apply Theorem 1. \(\square \)

Theorem 2 is conceptually the simplest formulation of the polar method for the \(t_\nu \)-distribution. However, further improvements are possible. One can (see for instance Marsaglia and Bray [4]) avoid expensive calculation of the cosine...
by using the fact that if \(U + Vi \) is uniformly distributed on the unit disk,
\(W \equiv U^2 + V^2 \), and \(C \equiv U/\sqrt{W} \), then \(W \) and \(C \) are independent, \(W \) has a uniform \([0, 1]\) distribution, and \(C \) has the same density as \(\cos \Theta \), that is,
\[
f_C(x) = \frac{1}{\pi \sqrt{1 - x^2}}, \quad -1 < x < 1.
\]
We incorporate this modification into our proposed algorithm, and note that \(Y \) in Theorem 2 is discarded, because of dependence on \(X \).

Polar algorithm for generating \(t_\nu \)-variates.

(a) Generate iid uniform \([0, 1]\) variates \(U \) and \(V \). Replace \(U \) by \(2U - 1 \), \(V \) by \(2V - 1 \).

(b) Define \(W \equiv U^2 + V^2 \). If \(W > 1 \) return to (a).

(c) Let \(C = \frac{U}{VW} \), \(R = \left(\nu(W^{-2/\nu} - 1) \right)^{1/2} \), \(X = RC \).

Then \(X \sim t_\nu \).

In order to sidestep one of the square-root calculations, we can rewrite (c) as (c') Let \(C^2 = \frac{U^2}{W} \), \(R^2 = \nu(W^{-2/\nu} - 1) \), \(X = \sqrt{(R^2C^2)} \).

Thus, the only expensive steps in the polar algorithm are to calculate \(W^{-2/\nu} \) and one square root, whose sign should be chosen at random.

As Neave [6] pointed out in connection with the original Box-Muller algorithm, care must be taken if the uniform random numbers required by the method (\(G \) and \(H \) in Theorem 2) are in fact pseudorandom numbers generated by the congruential method, as is currently almost invariably the case in practice. Possible cures are surveyed in Golder and Settle [3]. In particular, one can simply use two congruential generators, to different moduli (the "two-sequence method"), to generate \(G \) and \(H \). Golder and Settle show this to be an effective cure.

Acknowledgment

The author thanks an anonymous referee for helpful comments made.

Bibliography

Department of Economics, University of Birmingham, Birmingham B31 4BP, United Kingdom

E-mail address: R. Bailey@uk.ac.bham (Janet)
R. Bailey@bham.ac.uk (Internet)