Algorithms for optimal discontinuous piecewise linear and constant fits to continuous functions with adjustable nodes in one and two dimensions

Author:
M. J. Baines

Journal:
Math. Comp. **62** (1994), 645-669

MSC:
Primary 65D10; Secondary 41A30

MathSciNet review:
1223231

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a direct variational approach (with nonstandard variations) is used to generate algorithms to determine optimal *discontinuous* piecewise linear and piecewise constant fits to a continuous function of one or two variables with adjustable nodes. In the one-variable case the algorithm is fast and robust, the mesh cannot tangle, and the resulting fits are continuous a.e. In the two-variable case, on an adjustable triangular grid, the algorithm is less robust but gives good results for particular functions possessing a single steep feature. The extension to higher dimensions is straightforward.

**[1]**M. J. Baines,*On algorithms for best**fits to continuous functions with variable nodes*, Numerical Analysis Report 1/93, Dept. of Mathematics, University of Reading, U.K., 1993.**[2]**M. J. Baines and A. J. Wathen,*Moving finite element methods for evolutionary problems. I. Theory*, J. Comput. Phys.**79**(1988), no. 2, 245–269. MR**973330**, 10.1016/0021-9991(88)90016-2**[3]**D. L. Barrow, C. K. Chui, P. W. Smith, and J. D. Ward,*Unicity of best mean approximation by second order splines with variable knots*, Math. Comp.**32**(1978), no. 144, 1131–1143. MR**0481754**, 10.1090/S0025-5718-1978-0481754-1**[4]**Carl de Boor,*Good approximation by splines with variable knots*, Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972) Birkhäuser, Basel, 1973, pp. 57–72. Internat. Ser. Numer. Math., Vol. 21. MR**0403169****[5]**Carl de Boor,*Good approximation by splines with variable knots. II*, Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974, pp. 12–20. Lecture Notes in Math., Vol. 363. MR**0431606****[6]**Graham F. Carey and Hung T. Dinh,*Grading functions and mesh redistribution*, SIAM J. Numer. Anal.**22**(1985), no. 5, 1028–1040. MR**799126**, 10.1137/0722061**[7]**Charles K. Chui, Philip W. Smith, and Joseph D. Ward,*On the smoothness of best 𝐿₂ approximants from nonlinear spline manifolds*, Math. Comp.**31**(1977), no. 137, 17–23. MR**0422955**, 10.1090/S0025-5718-1977-0422955-7**[8]**E. Grosse,*A catalogue of algorithms for approximation*, Algorithms for approximation, II (Shrivenham, 1988) Chapman and Hall, London, 1990, pp. 479–514. MR**1071999**, 10.1007/978-1-4899-3442-0_41**[9]**J. Kautský and N. K. Nichols,*Equidistributing meshes with constraints*, SIAM J. Sci. Statist. Comput.**1**(1980), no. 4, 499–511. MR**610760**, 10.1137/0901036**[10]**P. D. Loach and A. J. Wathen,*On the best least squares approximation of continuous functions using linear splines with free knots*, IMA J. Numer. Anal.**11**(1991), no. 3, 393–409. MR**1118964**, 10.1093/imanum/11.3.393**[11]**J. D. Pryce,*On the convergence of iterated remeshing*, IMA J. Numer. Anal.**9**(1989), no. 3, 315–335. MR**1011394**, 10.1093/imanum/9.3.315**[12]**Andrew B. White Jr.,*On selection of equidistributing meshes for two-point boundary-value problems*, SIAM J. Numer. Anal.**16**(1979), no. 3, 472–502. MR**530482**, 10.1137/0716038

Retrieve articles in *Mathematics of Computation*
with MSC:
65D10,
41A30

Retrieve articles in all journals with MSC: 65D10, 41A30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1223231-5

Keywords:
Best fits,
adjustable nodes

Article copyright:
© Copyright 1994
American Mathematical Society