The -dimensional distribution of combined GFSR sequences

Author:
Shu Tezuka

Journal:
Math. Comp. **62** (1994), 809-817

MSC:
Primary 65C10; Secondary 94A55

MathSciNet review:
1223233

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop an efficient method for analysis of the *k*-dimensional distribution of combinations of several GFSR sequences by bitwise exclusive-or operations. First, we introduce the notion of a resolution-wise lattice structure for GFSR sequences, and show that by applying a theorem of Couture to this type of lattice, we obtain a precise description of *k*-dimensional distribution of combined GFSR sequences in the same way as for combined Tausworthe sequences. Finally, we apply this method to the combination of two different Twisted GFSR generators, which were recently proposed by Matsumoto and Kurita, and investigate the order of equidistribution of the combined sequence.

**[1]**Raymond Couture, Pierre L’Ecuyer, and Shu Tezuka,*On the distribution of 𝑘-dimensional vectors for simple and combined Tausworthe sequences*, Math. Comp.**60**(1993), no. 202, 749–761, S11–S16. MR**1176708**, 10.1090/S0025-5718-1993-1176708-4**[2]**R. F. Koopman,*The order of equidistribution of subsequences of some asymptotically random sequences*, Comm. ACM**29**(1986), 802-806.**[3]**Pierre L’Ecuyer,*Uniform random number generation*, Ann. Oper. Res.**53**(1994), 77–120. Simulation and modeling. MR**1310607**, 10.1007/BF02136827**[4]**A. K. Lenstra,*Factoring multivariate polynomials over finite fields*, J. Comput. System Sci.**30**(1985), no. 2, 235–248. MR**801825**, 10.1016/0022-0000(85)90016-9**[5]**T. G. Lewis and W. H. Payne,*Generalized feedback shift register pseudorandom number algorithms*, J. Assoc. Comput. Mach.**20**(1973), 456-468.**[6]**M. Matsumoto and Y. Kurita,*Twisted GFSR generators*, ACM Trans. Modeling and Computer Simulation**2**(1992), 179-194.**[7]**-,*Well tempered twisted GFSR generators*, manuscript, (1992).**[8]**Harald Niederreiter,*Random number generation and quasi-Monte Carlo methods*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1172997****[9]**Shu Tezuka,*Walsh-spectral test for GFSR pseudorandom numbers*, Comm. ACM**30**(1987), no. 8, 731–735. MR**899397**, 10.1145/27651.27657**[10]**Shu Tezuka,*A heuristic approach for finding asymptotically random GFSR generators*, J. Inform. Process.**10**(1987), no. 3, 178–182. MR**935911****[11]**-,*Lattice structure of pseudorandom sequences from shift register generators*, Proc. 1990 Winter Simulation Conference, IEEE Press, 1990, pp. 266-269.**[12]**-,*A unified view of long period random number generators*, submitted, (1992).**[13]**S. Tezuka and P. L'Ecuyer,*Efficient and portable combined Tausworthe random number generators*, ACM Trans. Modeling and Computer Simulation**1**(1991), 99-112.

Retrieve articles in *Mathematics of Computation*
with MSC:
65C10,
94A55

Retrieve articles in all journals with MSC: 65C10, 94A55

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1994-1223233-9

Keywords:
GFSR sequences,
Twisted GFSR,
*k*-dimensional distribution,
lattice structure

Article copyright:
© Copyright 1994
American Mathematical Society