Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A quadrature formula for entire functions of exponential type


Authors: Qazi Ibadur Rahman and Gerhard Schmeisser
Journal: Math. Comp. 63 (1994), 215-227
MSC: Primary 65D30; Secondary 30D99, 65D32
DOI: https://doi.org/10.1090/S0025-5718-1994-1234427-0
MathSciNet review: 1234427
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A quadrature formula over a semi-infinite interval for entire functions of exponential type is established. An alternative approach to a known expansion formula and an extension of it are also presented.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • [2] -, Summation formulas and band-limited signals, Tôhoku Math. J. (2) 24 (1972), 121-125. MR 0330915 (48:9252)
  • [3] R. P. Boas, Jr. and R. C. Buck, Polynomial expansions and analytic functions, Springer, Berlin, 1958. MR 0094466 (20:984)
  • [4] C. Frappier and Q. I. Rahman, Une formule de quadrature pour les fonctions entières de type exponentiel, Ann. Sci. Math. Québec 10 (1986), 17-26. MR 841119 (88a:65031)
  • [5] I. S. Gradstein and I. M. Ryshik, Tafeln--Tables, vol. 1 (bilingual: German-English), Harri Deutsch, Frankfurt/M., 1981. MR 671418 (83i:00012)
  • [6] P. Henrici, Applied and computational complex analysis, vol. 1, Wiley, New York, 1974. MR 0372162 (51:8378)
  • [7] -, Applied and computational complex analysis, vol. 2, Wiley, New York, 1977. MR 0453984 (56:12235)
  • [8] E. Lindelöf, Le calcul des résidus, Chelsea, New York, 1947.
  • [9] Q. I. Rahman and G. Schmeisser, Quadrature formulae and functions of exponential type, Math. Comp. 54 (1990), 245-270. MR 990602 (90g:65028)
  • [10] G. Schmeisser and H. Schirmeier, Praktische Mathematik, de Gruyter, Berlin, 1976.
  • [11] F. Stenger, Integration formulae based on the trapezoidal formula, J. Inst. Math. Appl. 12 (1973), 103-114. MR 0381261 (52:2158)
  • [12] -, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev. 23 (1981), 165-224. MR 618638 (83g:65027)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30, 30D99, 65D32

Retrieve articles in all journals with MSC: 65D30, 30D99, 65D32


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1234427-0
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society