Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the shape of tetrahedra from bisection


Authors: Anwei Liu and Barry Joe
Journal: Math. Comp. 63 (1994), 141-154
MSC: Primary 65M50; Secondary 51M20, 52B10, 65N30
DOI: https://doi.org/10.1090/S0025-5718-1994-1240660-4
MathSciNet review: 1240660
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a procedure for bisecting a tetrahedron T successively into an infinite sequence of tetrahedral meshes $ {\mathcal{T}^0},{\mathcal{T}^1},{\mathcal{T}^2}, \ldots $, which has the following properties: (1) Each mesh $ {\mathcal{T}^n}$ is conforming. (2) There are a finite number of classes of similar tetrahedra in all the $ {\mathcal{T}^n},n \geq 0$. (3) For any tetrahedron $ {\mathbf{T}}_i^n$ in $ {\mathcal{T}^n},\eta ({\mathbf{T}}_i^n) \geq {c_1}\eta ({\mathbf{T}})$, where $ \eta $ is a tetrahedron shape measure and $ {c_1}$ is a constant. (4) $ \delta ({\mathbf{T}}_i^n) \leq {c_2}{(1/2)^{n/3}}\delta ({\mathbf{T}})$, where $ \delta ({\mathbf{T'}})$ denotes the diameter of tetrahedron $ {\mathbf{T'}}$ and $ {c_2}$ is a constant.

Estimates of $ {c_1}$ and $ {c_2}$ are provided. Properties (2) and (3) extend similar results of Stynes and Adler, and of Rosenberg and Stenger, respectively, for the 2-D case. The diameter bound in property (4) is better than one given by Kearfott.


References [Enhancements On Off] (What's this?)

  • [1] A. Adler, On the bisection method for triangles, Math. Comp. 40 (1983), 571-574. MR 689473 (84d:51028)
  • [2] G. H. Golub and C. F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570 (90d:65055)
  • [3] B. Joe, Delaunay versus max-min solid angle triangulations for three-dimensional mesh generation, Internat. J. Numer. Methods Engrg. 31 (1991), 987-997.
  • [4] -, Three-dimensional boundary-constrained triangulations, Artificial Intelligence, Expert Systems, and Symbolic Computing (E. N. Houstis and J. R. Rice, eds.), Elsevier Science Publishers, 1992, pp. 215-222.
  • [5] B. Kearfott, A proof of convergence and an error bound for the method of bisection in $ {{\mathbf{R}}^n}$, Math. Comp. 32 (1978), 1147-1153. MR 0494897 (58:13677)
  • [6] M.-C. Rivara, Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal. 21 (1984), 604-613. MR 744176 (85i:65159)
  • [7] -, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat. J. Numer. Methods Engrg. 20 (1984), 745-756. MR 739618 (85h:65258)
  • [8] -, A grid generator based on 4-triangles conforming mesh-refinement algorithms, Internat. J. Numer. Methods Engrg. 24 (1987), 1343-1354.
  • [9] I. G. Rosenberg and F. Stenger, A lower bound on the angles of triangles constructed by bisecting the longest side, Math. Comp. 29 (1975), 390-395. MR 0375068 (51:11264)
  • [10] M. Senechal, Which tetrahedra fill space?, Math. Mag. 54 (1981), 227-243. MR 644075 (83h:52020)
  • [11] M. Stynes, On faster convergence of the bisection method for all triangles, Math. Comp. 35 (1980), 1195-1201. MR 583497 (81j:51023)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M50, 51M20, 52B10, 65N30

Retrieve articles in all journals with MSC: 65M50, 51M20, 52B10, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1240660-4
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society