Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On generalized inversive congruential pseudorandom numbers


Author: Jürgen Eichenauer-Herrmann
Journal: Math. Comp. 63 (1994), 293-299
MSC: Primary 11K45; Secondary 11L07, 65C10
DOI: https://doi.org/10.1090/S0025-5718-1994-1242056-8
MathSciNet review: 1242056
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The inversive congruential method with prime modulus for generating uniform pseudorandom numbers has several very promising properties. Very recently, a generalization for composite moduli has been introduced. In the present paper it is shown that the generated sequences have very attractive statistical independence properties.


References [Enhancements On Off] (What's this?)

  • [1] J. Eichenauer and J. Lehn, A non-linear congruential pseudo random number generator, Statist. Papers 27 (1986), 315-326. MR 877295 (88i:65014)
  • [2] J. Eichenauer-Herrmann, Improved lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 62 (1994), 783-786. MR 1216258 (94g:11058)
  • [3] -, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176.
  • [4] -, Inversive congruential pseudorandom numbers avoid the planes, Math. Comp. 56 (1991), 297-301. MR 1052092 (91k:65021)
  • [5] -, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993), 375-384. MR 1159168 (93d:65011)
  • [6] M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, Finite Fields, Coding Theory, and Advances in Communications and Computing (G. L. Mullen and P. J.-S. Shiue, eds.), Dekker, New York, 1992, pp. 75-80. MR 1199823 (94a:11117)
  • [7] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Clarendon Press, Oxford, 1979. MR 568909 (81i:10002)
  • [8] K. Huber, On the period length of generalized inversive pseudorandom number generators, Appl. Algebra in Eng. Comm. and Comput. (to appear). MR 1282100 (96c:11090)
  • [9] J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961), 649-660. MR 0131885 (24:A1732)
  • [10] H. Niederreiter, Pseudo-random numbers and optimal coefficients, Adv. in Math. 26 (1977), 99-181. MR 0476679 (57:16238)
  • [11] -, The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989), 135-144. MR 971407 (90e:65008)
  • [12] -, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 55 (1990), 277-287. MR 1023766 (91e:65016)
  • [13] -, Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991), 323-345. MR 1118905 (92h:65010)
  • [14] -, Nonlinear methods for pseudorandom number and vector generation, Simulation and Optimization (G. Pflug and U. Dieter, eds.), Lecture Notes in Econom. and Math. Systems, vol. 374, Springer, Berlin, 1992, pp. 145-153.
  • [15] -, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, PA, 1992. MR 1172997 (93h:65008)
  • [16] -, Finite fields, pseudorandom numbers, and quasirandom points, Finite Fields, Coding Theory, and Advances in Communications and Computing (G. L. Mullen and P. J.-S. Shiue, eds.), Dekker, New York, 1992, pp. 375-394. MR 1199844 (94a:11121)
  • [17] -, New methods for pseudorandom number and pseudorandom vector generation, Proc. 1992 Winter Simulation Conf. (Arlington, VA, 1992), IEEE Press, Piscataway, NJ, 1992, pp. 264-269.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11K45, 11L07, 65C10

Retrieve articles in all journals with MSC: 11K45, 11L07, 65C10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1242056-8
Keywords: Uniform pseudorandom numbers, inversive congruential method, composite modulus, statistical independence, discrepancy
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society