ON THE COMPUTATION OF BATTLE-LEMARIE'S WAVELETS

MING-JUN LAI

Abstract. We propose a matrix approach to the computation of Battle-Lemarié's wavelets. The Fourier transform of the scaling function is the product of the inverse $F(x)$ of a square root of a positive trigonometric polynomial and the Fourier transform of a B-spline of order m. The polynomial is the symbol of a bi-infinite matrix B associated with a B-spline of order $2m$. We approximate this bi-infinite matrix B_{2m} by its finite section A_N, a square matrix of finite order. We use A_N to compute an approximation x_N of x whose discrete Fourier transform is $F(x)$. We show that x_N converges pointwise to x exponentially fast. This gives a feasible method to compute the scaling function for any given tolerance. Similarly, this method can be used to compute the wavelets.

1. Introduction

Battle-Lemarié's wavelets [1, 3] may be constructed by using a multiresolution approximation built from polynomial splines of order $m > 0$. See, e.g., [4] or [2]. To be precise, let V_0 be the vector space of all functions of $L^2(\mathbb{R})$ which are $m - 2$ times continuously differentiable and equal to a polynomial of degree $m - 1$ on each interval $[n + m/2, n + 1 + m/2]$ for all $n \in \mathbb{Z}$. Define the other resolution space V_k by

$$
V_k := \{u(2^k t) : u \in V_0\}, \quad \forall k \in \mathbb{Z}.
$$

It is known that $\{V_k\}_{k \in \mathbb{Z}}$ provide a multiresolution approximation, and there exists a unique scaling function φ such that

$$
V_k = \text{span}_{L^2}(2^{k/2}\varphi(2^k t - n) : n \in \mathbb{Z})
$$

for all k, and the integer translates of φ are orthonormal to each other. (See, e.g., [4].) Define a transfer function $H(\omega)$ by

$$
H(\omega) = \frac{\hat{\varphi}(2\omega)}{\hat{\varphi}(\omega)},
$$

where $\hat{\varphi}$ denotes the Fourier transform of φ. Then the wavelet ψ associated with the scaling function φ is given in terms of its Fourier transform by

$$
\psi(\omega) = e^{-j\omega/2}H(\omega/2 + \pi)\varphi(\omega/2).
$$

Received by the editor May 14, 1993.
1991 Mathematics Subject Classification. Primary 41A15, 41A30, 42C15, 47B35.
Key words and phrases. B-spline, bi-infinite matrices, exponential decay, finite section, positive operator, Toeplitz matrix, wavelet.
Research supported by the National Science Foundation under Grant #DMS-9303121.
Here and throughout, \(j := \sqrt{-1} \). The scaling function \(\varphi \) associated with the multiresolution approximation may be given by

\[
\varphi(\omega) = \frac{1}{\sqrt{\sum_{k \in \mathbb{Z}} |\hat{B}_m(\omega + 2k\pi)|^2}} \hat{B}_m(\omega),
\]

where \(B_m \) is the well-known central B-spline of order \(m \) whose Fourier transform is given by

\[
\hat{B}_m(\omega) = \left(\frac{\sin \omega / 2}{\omega / 2} \right)^m.
\]

By using Poisson's summation formula, we have

\[
\varphi(\omega) = \frac{1}{\sum_{k \in \mathbb{Z}} B_2m(k)e^{-jk\omega}} \hat{B}_m(\omega).
\]

Thus, the transfer function is

\[
H(\omega) = \sqrt{\frac{\sum_{k \in \mathbb{Z}} B_2m(k)e^{-jk\omega}}{\sum_{k \in \mathbb{Z}} B_2m(k)e^{-jk\omega}}} (\cos \omega / 2)^m.
\]

Then the wavelet \(\psi \) associated with \(\varphi \) is given by

\[
\psi(\omega) = e^{-j\omega / 2} H(\omega / 2 + \pi) \frac{1}{\sqrt{\sum_{k \in \mathbb{Z}} B_2m(k)e^{-jk\omega}}} \hat{B}_m(\omega / 2).
\]

The above Fourier transforms of \(\varphi, H, \) and \(\psi \) suggest that the scaling function, transfer function, and wavelet have the following representations:

\[
\varphi(t) = \sum_{k \in \mathbb{Z}} \alpha_k B_m(t - k),
\]

\[
H(\omega) = \sum_{k \in \mathbb{Z}} \beta_k e^{-jk\omega},
\]

\[
\psi(t) = \sum_{k \in \mathbb{Z}} \gamma_k B_m(2t - k).
\]

In this paper, we propose a matrix method to compute the \(\alpha_k \)'s, \(\beta_k \)'s, and \(\gamma_k \)'s. Let us use \(\varphi \) to illustrate our method as follows: view \(\sum_{k \in \mathbb{Z}} B_2m(k)e^{-jk\omega} \) as the symbol of a bi-infinite matrix \(B_{2m} = (b_{ik})_{i,k \in \mathbb{Z}} \) with \(b_{i,k} = b_0, k - i = B_{2m}(k - i) \) for all \(i, k \in \mathbb{Z} \). Similarly, \(\sqrt{\sum_{k \in \mathbb{Z}} B_2m(k)e^{-jk\omega}} \) can be viewed as the symbol of another (unknown) bi-infinite matrix \(C_{2m} \). Then it is easy to see that

\[
C_{2m}^2 = B_{2m}.
\]

To find

\[
\sum_{k \in \mathbb{Z}} \alpha_k e^{-jk\omega} = \frac{1}{\sqrt{\sum_{k \in \mathbb{Z}} B_2m(k)e^{-jk\omega}}}
\]

is equivalent to solving

\[
C_{2m} \mathbf{x} = \delta
\]

with \(\delta = (\delta_i)_{i \in \mathbb{Z}}, \delta_0 = 1, \) and \(\delta_i = 0 \) for all \(i \in \mathbb{Z} \setminus \{0\} \), where \(\mathbf{x} = (\alpha_k)_{k \in \mathbb{Z}} \). Our numerical method is to find an approximation to \(\mathbf{x} \) within a given tolerance.
Let $A_N = (b_{ik})_{-N \leq i, k \leq N}$ be a finite section of B_{2m}. Note that A_N is symmetric and totally positive. Thus, we can find \tilde{P}_N such that

$$\tilde{P}_N^2 = A_N$$

by using, e.g., the singular value decomposition. Then we solve $\tilde{P}_N x_N = \delta_N$ with δ_N a vector of $2N+1$ components which are all zeros except for the middle one, which is 1. We can show that x_N converges pointwise to x exponentially fast. Similarly, we can use this idea to compute an approximation of $\{\beta_k\}_{k \in \mathbb{Z}}$ by (2) and $\{\gamma_k\}_{k \in \mathbb{Z}}$ by (3). Therefore, the discussion mentioned above furnishes a numerical method to compute Battle-Lemarié's wavelet.

To prove the convergence of x_N to x, we place ourselves in a more general setting. We study a general bi-infinite matrix A. (For the case of Battle-Lemarié's wavelets, $A = B_{2m}$.) We look for certain conditions on A such that the solution x_N of $\tilde{P}_N x_N = \delta_N$ with $\tilde{P}_N^2 = A_N$ converges to the solution x of $P x = \delta$ with $P^2 = A$, where A_N is a finite section of A. This is discussed in the next section. In the last section, we show that the bi-infinite matrix B_{2m} satisfies the conditions on A obtained in §2. This will establish our numerical method for computing Battle-Lemarié's wavelets.

2. Main Results

Let \mathbb{Z} be the set of all integers. Let $l^2 := l^2(\mathbb{Z})$ be the space of all square summable sequences with indices in \mathbb{Z}. That is,

$$l^2(\mathbb{Z}) = \left\{ (\ldots, x_{-1}, x_0, x_1, \ldots)^t : \sum_{i=-\infty}^{\infty} |x_i|^2 < \infty \right\}.$$

It is known that l^2 is a Hilbert space. We shall use x to denote each vector in l^2 and use A to denote a linear operator from l^2 to l^2. It is known that A can be expressed as a bi-infinite matrix. Thus, we shall write $A = (a_{ik})_{i, k \in \mathbb{Z}}$.

In the following, we shall consider A to be a banded and/or Toeplitz matrix. That is, A is said to be banded if there exists a positive integer b such that $a_{ik} = 0$ whenever $|i-k| > b$. The matrix A is said to be Toeplitz if $a_{i+k, m+k} = a_{i, m}$ for all $i, k, m \in \mathbb{Z}$. Denote by $F(x)(\omega)$ the symbol of a vector $x \in l^2$, i.e.,

$$F(x)(\omega) = \sum_{i \in \mathbb{Z}} x_i e^{-ji\omega}.$$

Denote by $F(A)(\omega)$ the symbol of a Toeplitz matrix $A = (a_{ik})_{i, k \in \mathbb{Z}}$, i.e.,

$$F(A)(\omega) = \sum_{i \in \mathbb{Z}} a_{i, 0} e^{-ji\omega}.$$

Suppose that $F(A)(\omega) \neq 0$ and $\sum_{i \in \mathbb{Z}} |a_{i, 0}| < \infty$. It is known from the well-known Wiener's theorem that there exists a sequence x such that

$$\frac{1}{F(A)(\omega)} = \sum_{k \in \mathbb{Z}} x_k e^{-jk\omega}$$

with $\sum_k |x_k| < \infty$. It is easy to see that to find this sequence x is equivalent to solving the linear system of bi-infinite order:

$$A x = \delta,$$
where \(\delta = (\ldots, \delta_{-1}, \delta_0, \delta_1, \ldots)' \) with \(\delta_0 = 1 \) and \(\delta_i = 0 \) for all \(i \in \mathbb{Z}\setminus\{0\} \).

Furthermore, if the matrix \(A \) is a positive operator, then there exists a unique positive square root \(P \) of \(A \). That is, \(P^2 = A \). The symbol representation is \(F(P)(\omega) = \sqrt{F(A)(\omega)} \). To find \(F(P)(\omega) \) is equivalent to finding a matrix \(P \) such that \(P^2 = A \).

Certainly, we cannot solve a linear system of bi-infinite order. Neither can we decompose a matrix of bi-infinite order into two matrices of bi-infinite order. However, we can do this approximatively. Let \(N \) be a positive integer, and let \(A_N = (a_{ik})_{-N \leq i, k \leq N} \) be a finite section of \(A \). Let \(I_{N,\infty} = (0, I_{2N+1,2N+1}, 0) \) be a matrix of \(2N+1 \) rows and bi-infinite columns with \(I_{2N+1,2N+1} \) being the identity matrix of size \((2N+1) \times (2N+1) \) such that

\[
A_N = I_{N,\infty} A I_{N,\infty}'.
\]

Denote \(\delta_N = I_{N,\infty} \delta \) and \(x_N = I_{N,\infty} x \). Then we shall solve the following linear system:

\[
A_N \hat{x}_N = \delta_N.
\]

We claim that \(\hat{x}_N \) converges to \(x \) exponentially fast as \(N \) increases to \(\infty \), under certain conditions on \(A \). Furthermore, we shall solve \(\hat{P}_N^2 = A_N \) for \(\hat{P}_N \) by using the singular value decomposition. Once we have \(\hat{P}_N \), we shall solve

\[
\hat{P}_N \hat{y}_N = \delta_N.
\]

We claim that \(\hat{y}_N \) converges to \(y \) exponentially fast as \(N \to \infty \), provided \(A \) satisfies certain conditions.

To check the conditions on \(A \), we need the following definition.

Definition. A matrix \(A = (a_{ik})_{i,k \in \mathbb{Z}} \) is said to be of exponential decay off its diagonal if

\[
|a_{ik}| \leq K r^{|i-k|}
\]

for some constant \(K \) and \(r \in (0, 1) \).

We begin with an elementary lemma.

Lemma 1. Suppose that \(A \) is of exponential decay off its diagonal and has a bounded inverse. Suppose that \(A_N^{-1} = (\hat{a}_{ik})_{-N \leq i, k \leq N} \) satisfies the property that

\[
|\hat{a}_{i,k}(N)| \leq K r^{|i-k|}, \quad \forall -N \leq i, k \leq N,
\]

for all \(N > 0 \). Then there exists \(r_1 \in (0, 1) \) and a constant \(K_1 \) such that

\[
\|I_{N,\infty} x - \hat{x}_N\|_2 \leq K_1 r_1^N,
\]

where \(x \) is the solution of \(Ax = \delta \) and \(x_N \) is the solution of \(A_N x_N = \delta_N \).

Proof. From the assumption of the lemma, there exist \(K \) and \(r \in (0, 1) \) such that \(A = (a_{ik})_{i,k \in \mathbb{Z}} \) and \(A_N^{-1} = (\hat{a}_{i,k}(N))_{-N \leq i, k \leq N} \) satisfy

\[
|a_{ik}| \leq K r^{|i-k|} \quad \text{and} \quad |\hat{a}_{ik}| \leq K r^{|i-k|}.
\]

Write

\[
A I_{N,\infty}' = \begin{bmatrix} B & C \\ A_N & 0 \end{bmatrix} \quad \text{and} \quad d = B A_N^{-1} \delta_N \quad \text{with} \quad d = (\ldots, d_{-N-1}, d_{-N})'.
\]
Then we have, for each \(i = -\infty, \ldots, -N - 1, -N \),

\[
|d_i| = \left| \sum_{k=-N}^{N} a_{ik} \delta_{k,0}(N) \right| \leq K^2 \sum_{k=-N}^{N} r^{|i-k|} r^{|k|} \\
= K^2 \left(r^{-i} \sum_{k=0}^{N} r^{2k} + N r^{-i} \right) \leq C \lambda^{-i}
\]

for some constant \(C \) and \(\lambda \in (0, 1) \). Thus, \(\|BA^{-1}\delta_N\|_2 \leq C' \lambda^N \). Similarly, \(\|CA_N^{-1}\delta_N\|_2 \leq C' \lambda^N \). Hence,

\[
\|I_{N,\infty}x - x_N\|_2 \leq \|x - I_{N,\infty} x_N\|_2 \leq \|A^{-1}\|_2 \|\delta - AI_N^{-1}\delta_N\|_2 \\
\leq \|A^{-1}\|_2 \left\| \begin{bmatrix} B \\ A_N^{-1} \end{bmatrix} \delta_N \right\|_2 \\
\leq \|A^{-1}\|_2 \left(\|BA_N^{-1}\delta_N\|_2 + \|CA_N^{-1}\delta_N\|_2 \right) \leq \|A^{-1}\|_2 2 C' \lambda^N,
\]

hence the assertion with \(K_1 = 2 C' \|A^{-1}\|_2 \) and \(r_1 = \lambda \). This establishes the lemma. \(\square \)

Next, we consider approximating the square root of a positive operator.

Lemma 2. Let \(P \) be the unique square root of a positive operator \(A \). Suppose that \(A \) is banded and \(\|A - I\|_2 \leq r < 1 \), where \(I \) is the identity operator from \(l^2 \) to \(l^2 \). Then \(P = (P_{ik})_{i,k \in \mathbb{Z}} \) is of exponential decay off its diagonal.

Proof. The uniqueness of \(P \) and the convergence of the series

\[
\sum_{i=0}^{\infty} (-1)^i \frac{(2i-3)!!}{(2i)!!} (A - I)^i
\]

imply that

\[
P = \sqrt{A} = \sqrt{I + (A - I)} = \sum_{i=0}^{\infty} (-1)^i \frac{(2i-3)!!}{(2i)!!} (A - I)^i.
\]

The matrix \(A \) is banded and so is \(A - I \). If \(A - I \) has bandwidth \(b \), then \((A - I)^i \) is also banded with bandwidth \(ib \). Thus, \(|p_{ik}| \leq K r^{|i-k|/b} \) for some constant \(K \). This finishes the proof. \(\square \)

Lemma 3. Let \(P \) be the unique square root of a positive operator \(A \). Suppose that \(A \) is banded and \(\|A - I\|_2 \leq r < 1 \), where \(I \) is the identity operator from \(l^2 \) to \(l^2 \). Then \(P^{-1} = (P_{ik})_{i,k \in \mathbb{Z}} \) is of exponential decay off its diagonal.

Proof. The uniqueness of \(P^{-1} \) and the convergence of the series

\[
\sum_{i=0}^{\infty} (-1)^i \frac{(2i-1)!!}{(2i)!!} (A - I)^i
\]
imply that
\[P^{-1} = (A)^{-1/2} = (I + (A - I))^{-1/2} = \sum_{i=0}^{\infty} \frac{(-1)^i (2i - 1)!!}{(2i)!!} (A - I)^i. \]

Now we use the same argument as in the lemma above to conclude that \(P^{-1} \) is of exponential decay off its diagonal. \(\square \)

Let \(\hat{P}_N \) be the square root of \(A_N \). That is, \(\hat{P}_N^2 = A_N \). Denote \(P_N = I_N, \infty P \hat{P}_N, \infty \). We need to estimate \(P_N \hat{P}_N - \hat{P}_N P_N \). We have

Lemma 4. Let \(R = (r_{ik})_{-N \leq i, k \leq N} = P_N \hat{P}_N - \hat{P}_N P_N \). Then \(r_{ik} = O(r^{N/(4b)}) \) for \(k = -N/4 + 1, \ldots, N/4 - 1 \) and \(i = -N, \ldots, N \), where \(b \) is the bandwidth of \(A \) and \(r \) is as defined in Lemma 3.

Proof. It is known that \(P \) and \(A \) commute. Let us write
\[
\begin{bmatrix}
\alpha_1 & B & \alpha_2 \\
B' & P_N & C' \\
\alpha_3 & C & \alpha_4
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
\beta_1 & a & \beta_2 \\
a' & A_N & c' \\
\beta_3 & c & \beta_4
\end{bmatrix}.
\]

We have \(B'a + P_N A_N + C'c = a'B + A_N P_N + c'C \). Thus, \(P_N A_N - A_N P_N = a'B - B'a + c'C - C'c \). Let \(E = a'B - B'a + c'C - C'c \) and \(I_N := I_{2N+1, 2N+1} \). We have \(P_N(A_N - I_N) = (A_N - I_N)P_N + E \) and
\[
P_N(A_N - I_N)^n = (A_N - I_N)^n P_N + \sum_{k=0}^{n-1} (A_N - I_N)^k E(A_N - I_N)^{n-k-1}
\]
by using induction. Then, we have
\[
P_N \hat{P}_N = \sum_{n=0}^{\infty} (-1)^n \frac{(2n - 3)!!}{(2n)!!} P_N(A_N - I_N)^n
\]
\[
= \sum_{n=0}^{\infty} (-1)^n \frac{(2n - 3)!!}{(2n)!!} (A_N - I_N)^n P_N
\]
\[
+ \sum_{n=0}^{\infty} (-1)^n \frac{(2n - 3)!!}{(2n)!!} \sum_{k=0}^{n-1} (A_N - I_N)^k E(A_N - I_N)^{n-k-1}
\]
\[
= \hat{P}_N P_N + \sum_{n=0}^{\infty} (-1)^n \frac{(2n - 3)!!}{(2n)!!} \sum_{k=0}^{n-1} (A_N - I_N)^k E(A_N - I_N)^{n-k-1}.
\]

To estimate \(R = P_N \hat{P}_N - \hat{P}_N P_N \) which is the summation above, we break \(R \) into two parts and estimate the first by
\[
\left\| \sum_{n=N1+1}^{\infty} (-1)^n \frac{(2n - 3)!!}{(2n)!!} \sum_{k=0}^{n-1} (A_N - I_N)^k E(A_N - I_N)^{n-k-1} \right\|_2
\]
\[
\leq \sum_{n=N1+1}^{\infty} \frac{(2n - 3)!!}{(2n)!!} \|E\|_2 \|A_N - I_N\|_2^n \leq K_1 \|A_N - I_N\|_2^{N1}.
\]
Thus, this part has the desired property if we choose \(N1 \) appropriately. Next, we note that \(A_N - I_N \) is banded and its bandwidth is \(b \). Thus, for \(0 \leq n \leq N1 \), \((A_N - I_N)^n \) is also banded and has bandwidth \(nb \leq bN1 \).
Note also \(E = (e_{ik})_{-N \leq i, k \leq N} \) has the following property:

\[
e_{ik} = \begin{cases}
0 & \text{for } -N + b < k < N - b, \ -N + b < i < N - b, \\
O(r^{N-|k|}) & \text{for } -N \leq i \leq -N + b \text{ and } N - b \leq i \leq N, \ -N \leq k \leq N.
\end{cases}
\]

It follows that \((A_N - I_N)^l E \) has a similar property as \(E \):

\[
((A_N - I_N)^l E)_{ik} = \begin{cases}
0 & \text{for } -N + b < k < N - b, \\
- N + kb + b < i < N - lb - b, \\
O(r^{N-|k|}) & \text{for } -N \leq i \leq -N + lb + b, \\
N - lb - b \leq i \leq N, \text{ and } -N \leq k \leq N.
\end{cases}
\]

Choose \(N_1 \) such that \(N/(4b) \leq N_1 < N/(4b) + 1 \). Then \((A_N - I)^{N_1} \) has bandwidth \(bN_1 < N/4 + b \) and hence

\[
((A_N - I)^l E(A_N - I)^{n-l-1})_{ik} = \begin{cases}
O(r^{3N/4-b-|k|}) & \text{if } |k| \leq N/4 \text{ and } -N \leq i \leq N, \\
O(1) & \text{otherwise}
\end{cases}
\]

for \(l = 1, \ldots, N_1 \). Putting these two parts together, we have established that \(R \) has the desired property. \(\Box \)

We are now ready to prove the following.

Theorem 1. Suppose that \(A \) is a positive operator and \(\|A - I\|_2 < 1 \). Suppose that \(A \) is a banded matrix. Let \(P \) be the unique square root of \(A \) and \(y \) the solution of \(Py = \delta \). Let \(\hat{P}_N \) be a square root matrix such that \(\hat{P}_N^2 = A_N \) and \(\hat{y}_N \) the solution of \(\hat{P}_N \hat{y}_N = \delta_N \). Then

\[
\|I_{N, \infty} y - \hat{y}_N\|_2 \leq K r^N
\]

for some \(\lambda \in (0, 1) \) and a constant \(K > 0 \).

Proof. Let \(P = (p_{ik})_{i, k \in \mathbb{Z}} \) and \(P_N = (p_{ik})_{-N \leq i, k \leq N} \). By Lemma 2, the matrix \(P \) is of exponential decay off its diagonal. By Lemma 3, we know that \(P_N \) is of exponential decay off its diagonal uniformly with respect to \(N \) because of \(\|A_N - I_{2N+1, 2N+1}\|_2 < 1 \), which follows from \(\|A - I\|_2 < 1 \). The invertibility of \(A \) implies that \(P \) is invertible. From \(\|A - I\|_2 < 1 \) it follows that the inverse of \(P \) is bounded. Let \(\hat{y}_N \) be the solution of \(P_N \hat{y}_N = \delta_N \). Thus, we apply Lemma 1 to conclude that

\[
\|I_{N, \infty} y - \hat{y}_N\|_2 \leq K r^N
\]

for some \(r \in (0, 1) \).

We now proceed to estimate \(\|\hat{y}_N - \hat{y}_N\|_2 \).

Note that \(P^2 = A \) implies \(A_N = P_N^2 + B^t B + C^t C \) or \(\hat{P}_N^2 - P_N^2 = B^t B + C^t C \).

Thus, we have

\[
(P_N + \hat{P}_N)(\hat{P}_N - P_N) = \hat{P}_N^2 - P_N^2 + P_N \hat{P}_N - \hat{P}_N P_N = B^t B + C^t C + R,
\]

where \(R \) was defined in Lemma 4. Hence,

\[
(\hat{P}_N - P_N) = (P_N + \hat{P}_N)^{-1}(B^t B + C^t C + R).
\]

Note that the entries of \(B^t B + C^t C \) have the exponential decay property:

\[
(B^t B + C^t C)_{ik} = O(r^{N-|k|}) \].

By Lemma 4, we know that each entry of the middle section \((N/2)\) columns of the columns of \(B^t B + C^t C + R \) has exponential
decay $O(r^{-N/(4b)})$. Both p_n and \tilde{p}_n are positive and $\|(p_n + \tilde{p}_n)^{-1}\|_2 \leq \|\tilde{p}_n^{-1}\|_2$ is bounded. Recall that p_n^{-1} is of exponential decay off its diagonal. We have

$$
\|\tilde{y}_n - y_n\|_2 \leq \|\tilde{p}_n^{-1}\|_2 \|\delta_n - p_n^{-1} \delta_n\|_2
\leq \|\tilde{p}_n^{-1}\|_2 \|(p_n - \tilde{p}_n)(p_n^{-1} \delta_n)\|_2
\leq \|\tilde{p}_n^{-1}\|_2 \|(p_n + \tilde{p}_n)^{-1}\|_2 \|(B' B + C' C + R)p_n^{-1} \delta_n\|_2
\leq K \lambda^N
$$

for some $\lambda \in (r, 1)$. This completes the proof. \qed

In the proof above, an essential step is to show that each entry of the middle section of the columns of $\tilde{p}_n - p_n$ is of exponential decay. This indeed follows from $\tilde{p}_n - p_n = (p_n + \tilde{p}_n)^{-1}(B' B + C' C + R)$, the boundedness of $(p_n + \tilde{p}_n)^{-1}$, and the fact that each entry of the middle section of the columns of $B' B + C' C + R$ is of exponential decay. This has its own interest. Thus, we have the following

Theorem 2. Suppose that A is a positive operator and $\|A - I\|_2 < 1$. Suppose that A is a banded matrix. Let P be the unique square root of A and $p_n = I_{n, \infty}p(I_{n, \infty})^t$. Let \tilde{p}_n be a square root matrix such that $\tilde{p}_n^2 = A_n$. Then

$$
\|p_n \delta_n - \tilde{p}_n \delta_n\|_2 \leq K \lambda^N
$$

for some $\lambda \in (0, 1)$ and a constant K.

Finally, we remark that if $\|A - I\|_2 = 1$, then each entry of the middle section of the columns of R is convergent to 0 with speed $\frac{1}{N}$. The exponential decay in the above has to be replaced by

$$
\|p_n \delta_n - \tilde{p}_n \delta_n\|_2 \leq \frac{K}{N}.
$$

3. Computation of Battle-Lemarié’s wavelets

Fix a positive integer m. Let $A = B_{2m}$ be the bi-infinite matrix whose symbol is $\sum_{k \in \mathbb{Z}} B_{2m}(k)e^{-jkw}$. Clearly, A is a banded Toeplitz matrix. To see that A is a positive operator on l^2, we show that $A \geq cI$ for some $c > 0$ as follows: For any $x \in l^2$, we have

$$
x^t Ax = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x)(\omega) F(A)(\omega) F(x)(\omega) d\omega
= F(A)(\xi) \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(x)(\omega)|^2 d\omega
\geq \min_{\omega} F(A)(\omega) \|x\|_2^2.
$$

With $c = \min_{\omega} F(A)(\omega) > 0$, we have $A \geq cI$. Similarly, we can show that
\[\|A - I\|_2 < 1. \] Indeed,
\[
\|(A - I)x\|_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(A - I)(\omega)|^2 |F(x)(\omega)|^2 \, d\omega
\]
\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} |1 - F(A)(\omega)|^2 |F(x)(\omega)|^2 \, d\omega
\]
\[
\leq \max_{\omega} |1 - F(A)(\omega)|^2 \|x\|_2^2 \leq \left(1 - \min_{\omega} F(A)(\omega)\right)^2 \|x\|_2^2.
\]
Thus, we have
\[
\|(A - I)x\|_2 \leq \left(1 - \min_{\omega} F(A)(\omega)\right)\|x\|_2
\]
and hence, \(\|A - I\|_2 < 1\). Thus, \(B_{2m}\) satisfies all the conditions of Theorem 1.

By (1), we have
\[
\varphi(t) = \sum_k \alpha_k B_m(t - k) \quad \text{with} \quad x = (\alpha_k)_{k \in \mathbb{Z}} \quad \text{satisfying}
\]
\[
C_{2m} x = \delta \quad \text{and} \quad C_{2m}^2 = B_{2m}.
\]

Using our Theorem 1, we conclude that our numerical method is valid to compute the \(\alpha_k\)'s.

By (2), the transfer function is
\[
H(\omega) = \frac{\sqrt{\sum_{k \in \mathbb{Z}} B_{2m}(k)e^{-jk\omega}}}{\sqrt{\sum_{k \in \mathbb{Z}} B_{2m}(k)e^{-jk\omega}}} \cos^m(\omega/2).
\]

Note that when \(m\) is even, then \(\cos^m(\omega/2) = (1 - (e^{j\omega} + e^{-j\omega})/2)^m\), which is a finite series. However, when \(m\) is odd, \(\cos^m(\omega/2)\) is no longer a finite series. In order to compute \(H(\omega)\), let \(S_m\) be the Toeplitz matrix whose symbol is \(\cos^2m(\omega/2) = (1 - (e^{j\omega} + e^{-j\omega})/2)^m\). Let \(Z\) be a zero insertion operator on \(l^2\) defined by
\[
Zx = Z(x_i)_{i \in \mathbb{Z}} = (z_i)_{i \in \mathbb{Z}} \quad \text{with} \quad z_i = \begin{cases} x_{i/2} & \text{if } i \text{ is even}, \\ 0 & \text{if } i \text{ is odd}. \end{cases}
\]
Thus, \(H(\omega) = \sum_{k \in \mathbb{Z}} \beta_k e^{-jk\omega}\) with \(x = (\beta_k)_{k \in \mathbb{Z}}\) satisfying
\[
x = w * y * z,
\]
where \(*\) denotes the convolution operator of two vectors in \(l^2\) and
\[
y = C_m \delta, \quad z = ZC_m^{-1} \delta, \quad w = T \delta
\]
with \(C_m^2 = B_{2m}\), \(T_m^2 = S_m\). Using our Theorems 1 and 2, we know that our numerical method gives a good approximation to \(y\) and \(z\). For \(m\) even, our numerical method produces an \(x_N\) which converges pointwise to \(x\) exponentially. When \(m\) is odd, the remark after Theorem 2 has to be applied, and the \(w_N\) produced by this procedure does no longer converge to \(w\) exponentially.
By (3), the wavelet ψ associated with ϕ is given by
\[
\psi(2\omega) = e^{-j\omega H(\omega + \pi)}\phi(\omega).
\]
Once $\{\alpha_k\}_{k}\in\mathbb{Z}$ and $\{\beta_k\}_{k}\in\mathbb{Z}$ are computed, $\{\gamma_k\}_{k}\in\mathbb{Z}$ can be obtained by convolution.

We have implemented this method to compute Battle-Lemarié's wavelets in MATLAB. The graphs of Battle-Lemarié's wavelets are shown in the following figures.
ON THE COMPUTATION OF BATTLE-LEMARIÉ'S WAVELETS

BIBLIOGRAPHY

Department of Mathematics, University of Georgia, Athens, Georgia 30602
E-mail address: mjla@wiener.math.uga.edu