On the computation of Battle-Lemarié's wavelets

Author:
Ming Jun Lai

Journal:
Math. Comp. **63** (1994), 689-699

MSC:
Primary 65T99; Secondary 41A15, 42C15, 65D07

DOI:
https://doi.org/10.1090/S0025-5718-1994-1248971-3

MathSciNet review:
1248971

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a matrix approach to the computation of Battle-Lemarié's wavelets. The Fourier transform of the scaling function is the product of the inverse of a square root of a positive trigonometric polynomial and the Fourier transform of a B-spline of order *m*. The polynomial is the symbol of a bi-infinite matrix *B* associated with a B-spline of order 2*m*. We approximate this bi-infinite matrix by its finite section , a square matrix of finite order. We use to compute an approximation of **x** whose discrete Fourier transform is . We show that converges pointwise to **x** exponentially fast. This gives a feasible method to compute the scaling function for any given tolerance. Similarly, this method can be used to compute the wavelets.

**[1]**G. Battle,*A block spin construction of ondelettes*, I:*Lemarié functions*, Comm. Math. Phys.**110**(1987), 601-615. MR**895218 (88g:81054)****[2]**I. Daubechies,*Ten lectures on wavelets*, SIAM, Philadelphia, PA, 1992. MR**1162107 (93e:42045)****[3]**P.-G. Lemarié,*Ondelettes à localisation exponentielles*, J. Math. Pures Appl. (9)**67**(1988), 227-236. MR**964171 (89m:42024)****[4]**S. Mallat,*Multiresolution approximations and wavelet orthonormal bases of*, Trans. Amer. Math. Soc.**315**(1989), 69-87. MR**1008470 (90e:42046)****[5]**-,*A theory for multiresolution signal decomposition*:*the wavelet representation*, IEEE Trans. Pattern Anal. and Machine Intelligence**11**(1989), 674-693.

Retrieve articles in *Mathematics of Computation*
with MSC:
65T99,
41A15,
42C15,
65D07

Retrieve articles in all journals with MSC: 65T99, 41A15, 42C15, 65D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1248971-3

Keywords:
B-spline,
bi-infinite matrices,
exponential decay,
finite section,
positive operator,
Toeplitz matrix,
wavelet

Article copyright:
© Copyright 1994
American Mathematical Society