Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients

Authors:
Pierre Bernard, Denis Talay and Luciano Tubaro

Journal:
Math. Comp. **63** (1994), 555-587, S11

MSC:
Primary 65M12; Secondary 35K57, 60J15, 60J60

MathSciNet review:
1250770

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper, E. G. Puckett proposed a stochastic particle method for the nonlinear diffusion-reaction PDE in (the so-called "KPP" (Kolmogorov-Petrovskii-Piskunov) equation):

*f*is a function describing the reaction. His justification of the method and his analysis of the error were based on a splitting of the operator

*A*. He proved that, if

*h*is the time discretization step and

*N*the number of particles used in the algorithm, one can obtain an upper bound of the norm of the random error on in of order , provided , but conjectured, from numerical experiments, that it should be of order , without any relation between

*h*and

*N*.

We prove that conjecture. We also construct a similar stochastic particle method for more general nonlinear diffusion-reaction-convection PDEs

*L*is a strongly elliptic second-order operator with smooth coefficients, and prove that the preceding rate of convergence still holds when the coefficients of

*L*are constant, and in the other case is .

The construction of the method and the analysis of the error are based on a stochastic representation formula of the exact solution *u*.

**[1]**A. Bensoussan and J.-L. Lions,*Applications des inéquations variationnelles en contrôle stochastique*, Dunod, Paris, 1978 (French). Méthodes Mathématiques de l’Informatique, No. 6. MR**0513618****[2]**Piermarco Cannarsa and Vincenzo Vespri,*Generation of analytic semigroups by elliptic operators with unbounded coefficients*, SIAM J. Math. Anal.**18**(1987), no. 3, 857–872. MR**883572**, 10.1137/0518063**[3]**Brigitte Chauvin and Alain Rouault,*KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees*, Probab. Theory Related Fields**80**(1988), no. 2, 299–314. MR**968823**, 10.1007/BF00356108**[4]**B. Chauvin and A. Rouault,*A stochastic simulation for solving scalar reaction-diffusion equations*, Adv. in Appl. Probab.**22**(1990), no. 1, 88–100. MR**1039378**, 10.2307/1427598**[5]**B. Chauvin and A. Rouault,*Supercritical branching Brownian motion and K-P-P equation in the critical speed-area*, Math. Nachr.**149**(1990), 41–59. MR**1124793**, 10.1002/mana.19901490104**[6]**Avner Friedman,*Stochastic differential equations and applications. Vol. 1*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Probability and Mathematical Statistics, Vol. 28. MR**0494490****[7]**Takeyuki Hida,*Brownian motion*, Applications of Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1980. Translated from the Japanese by the author and T. P. Speed. MR**562914****[8]**H. Kunita,*Stochastic differential equations and stochastic flows of diffeomorphisms*, École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol. 1097, Springer, Berlin, 1984, pp. 143–303. MR**876080**, 10.1007/BFb0099433**[9]**G. N. Mil′šteĭn,*Approximate integration of stochastic differential equations*, Teor. Verojatnost. i Primenen.**19**(1974), 583–588 (Russian, with English summary). MR**0356225****[10]**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486****[11]**G. Da Prato and E. Sinestrari,*Differential operators with nondense domain*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**14**(1987), no. 2, 285–344 (1988). MR**939631****[12]**Elbridge Gerry Puckett,*Convergence of a random particle method to solutions of the Kolmogorov equation 𝑢_{𝑡}=𝜈𝑢ₓₓ+𝑢(1-𝑢)*, Math. Comp.**52**(1989), no. 186, 615–645. MR**964006**, 10.1090/S0025-5718-1989-0964006-X**[13]**Franz Rothe,*Global solutions of reaction-diffusion systems*, Lecture Notes in Mathematics, vol. 1072, Springer-Verlag, Berlin, 1984. MR**755878****[14]**Arthur S. Sherman and Charles S. Peskin,*A Monte Carlo method for scalar reaction diffusion equations*, SIAM J. Sci. Statist. Comput.**7**(1986), no. 4, 1360–1372. MR**857799**, 10.1137/0907090**[15]**H. Bruce Stewart,*Generation of analytic semigroups by strongly elliptic operators*, Trans. Amer. Math. Soc.**199**(1974), 141–162. MR**0358067**, 10.1090/S0002-9947-1974-0358067-4**[16]**D. Talay,*Simulation and numerical analysis of stochastic differential systems*:*a review*, Rapport de Recherche INRIA, vol. 1313, 1990 (and to appear in Effective Stochastic Analysis (P. Kree and W. Wedig, eds.), Springer-Verlag).

Retrieve articles in *Mathematics of Computation*
with MSC:
65M12,
35K57,
60J15,
60J60

Retrieve articles in all journals with MSC: 65M12, 35K57, 60J15, 60J60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1250770-3

Article copyright:
© Copyright 1994
American Mathematical Society