Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Divisibility properties of integers $ x,\ k$ satisfying $ 1\sp k+\cdots+(x-1)\sp k=x\sp k$


Authors: P. Moree, H. J. J. te Riele and J. Urbanowicz
Journal: Math. Comp. 63 (1994), 799-815
MSC: Primary 11D41; Secondary 11B68, 11Y50
DOI: https://doi.org/10.1090/S0025-5718-1994-1257577-1
MathSciNet review: 1257577
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Based on congruences $ \bmod\;p$ and on properties of Bernoulli polynomials and Bernoulli numbers, several conditions are derived for x, $ x,k \geq 2$ to satisfy the Diophantine equation $ {1^k} + {2^k} + \cdots + {(x - 1)^k} = {x^k}$. It is proved that $ {\text{ord}_2}(x - 3) = {\text{ord}_2}k + 3$ and that x cannot be divisible by any regular prime. Furthermore, by using the results of experiments with the above conditions on an SGI workstation it is proved that x cannot be divisible by any irregular prime $ < 10000$ and that k is divisible by the least common multiple of all the integers $ \leq 200$.


References [Enhancements On Off] (What's this?)

  • [1] M. R. Best and H. J. J. te Riele, On a conjecture of Erdös concerning sums of powers of integers, Report NW 23/76, Mathematisch Centrum, Amsterdam, May 1976.
  • [2] J. P. Buhler, R. E. Crandall, and R. W. Sompolski, Irregular primes to one million, Math. Comp. 59 (1992), 717-722. MR 1134717 (93a:11106)
  • [3] H. Davenport and D.J. Lewis, Homogeneous additive equations, Proc. Roy. Soc. Ser. A 274 (1963), 443-460. MR 0153655 (27:3617)
  • [4] H. Delange, Sur les zéros réels des polynômes de Bernoulli, Ann. Inst. Fourier (Grenoble) 41 (1991), 267-309. MR 1137289 (93h:11023)
  • [5] R. K. Guy, Unsolved problems in number theory, Vol. I, Springer-Verlag, New York, 1981. MR 656313 (83k:10002)
  • [6] K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer-Verlag, New York, 1990. MR 1070716 (92e:11001)
  • [7] W. Johnson, On the vanishing of the Iwasawa invariant $ {\mu _p}$ for $ p < 8000$, Math. Comp. 27 (1973), 387-396. MR 0384748 (52:5621)
  • [8] -, Irregular prime divisors of the Bernoulli numbers, Math. Comp. 28 (1974), 653-657. MR 0347727 (50:229)
  • [9] K. Lorentz and J. Urbanowicz, A note on the equation $ {1^k} + {2^k} + \cdots + {(x - 1)^k} = {x^k}$, unpublished manuscript, 1989.
  • [10] J. van de Lune, On a conjecture of Erdös. I, Report ZW 54/75, Mathematisch Centrum, Amsterdam, September 1975.
  • [11] P. Moree, H. J. J. te Riele, and J. Urbanowicz, Divisibility properties of integers x and k satisfying $ {1^k} + {2^k} + \cdots + {(x - 1)^k} = {x^k}$, Report NM-R9215, Centrum voor Wiskunde en Informatica, Amsterdam, August 1992.
  • [12] L. Moser, On the diophantine equation $ {1^n} + {2^n} + \cdots + {(m - 1)^n} = {m^n}$, Scripta Math. 19 (1953), 84-88. MR 0054627 (14:950g)
  • [13] P. Ribenboim, 13 lectures on Fermat's Last Theorem, Springer-Verlag, New York, 1979. MR 551363 (81f:10023)
  • [14] A. Schinzel, private communication to J. Urbanowicz.
  • [15] H. N. Shapiro, Introduction to the theory of numbers, Wiley-Interscience, New York, 1983. MR 693458 (84f:10001)
  • [16] J. Urbanowicz, Remarks on the equation $ {1^k} + {2^k} + \cdots + {(x - 1)^k} = {x^k}$, Indag. Math. Ser. A 91 (1988), 343-348. MR 964840 (90b:11026)
  • [17] H. S. Vandiver, On Bernoulli's numbers and Fermat's last theorem, Duke Math. J. 3 (1937), 569-584. MR 1546011
  • [18] S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp. 32 (1978), 583-591. MR 0491465 (58:10711)
  • [19] L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, 1982. MR 718674 (85g:11001)
  • [20] G. F. Zhou and C. D. Kang, On the diophantine equation $ \sum _{k = 1}^m{k^n} = {(m + 1)^n}$, J. Math. Res. Exposition 3 (1983), 47-48. MR 744117 (85m:11020)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11D41, 11B68, 11Y50

Retrieve articles in all journals with MSC: 11D41, 11B68, 11Y50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1257577-1
Keywords: Sums of powers, regular and irregular primes, Bernoulli numbers, congruences, Diophantine equations
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society